

STANDARD

ANSI/ASHRAE Standard 55-2013

(Supersedes ANSI/ASHRAE Standard 55-2010) Includes ANSI/ASHRAE addenda listed in Appendix M

Thermal Environmental Conditions for Human Occupancy

See Appendix M for approval dates by the ASHRAE Standards Committee, the ASHRAE Board of Directors, and the American National Standards Institute.

This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE Web site (www.ashrae.org) or in paper form from the Manager of Standards. The latest edition of an ASHRAE Standard may be purchased from the ASHRAE Web site (www.ashrae.org) or from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: orders@ashrae.org. Fax: 678-539-2129. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions.

© 2013 ASHRAE ISSN 1041-2336

ASHRAE Standing Standard Project Committee 55 Cognizant TC: 2.1, Physiology and Human Environment SPLS Liaison: Steven F. Bruning

Gwelen Paliaga*, *Chair* Lawrence J. Schoen*, *Vice Chair* Peter F. Alspach*, *Secretary* Sahar Abbaszadeh* Edward A. Arens* Richard M. Aynsley* Robert Bean* Atze Boerstra Gail S. Brager Richard de Dear Josh Eddy* Yanzheng Guan Thomas B. Hartman* Daniel Int-Hout, III* Michael A. Humphreys Essam E. Khalil* Baizhan Li Brian M. Lynch Michael P. O'Rourke* Abhijeet Pande* Julian Rimmer* Stefano Schiavon Peter Simmonds* John L. Stoops Stephen C. Turner*

*Denotes voting member at time of publication

ASHRAE STANDARDS COMMITTEE 2013-2014

William F. Walter, *Chair* Richard L. Hall, *Vice-Chair* Karim Amrane Joseph R. Anderson James Dale Aswegan Charles S. Barnaby Steven F. Bruning John A. Clark Waller S. Clements David R. Conover John F. Dunlap James W. Earley, Jr. Steven J. Emmerich Julie M. Ferguson Krishnan Gowri Cecily M. Grzywacz Rita M. Harrold Adam W. Hinge Debra H. Kennoy Malcolm D. Knight

Rick A. Larson Mark P. Modera Cyrus H. Nasseri Janice C. Peterson Heather L. Platt Douglas T. Reindl Julia A. Keen, *BOD ExO* Thomas E. Werkema, Jr., *CO*

Stephanie C. Reiniche, Manager of Standards

SPECIAL NOTE

This American National Standard (ANS) is a national voluntary consensus standard developed under the auspices of ASHRAE. *Consensus* is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this standard as an ANS, as "substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution." Compliance with this standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review. ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees.

The Manager of Standards of ASHRAE should be contacted for:

- a. interpretation of the contents of this Standard,
- b. participation in the next review of the Standard.
- c. offering constructive criticism for improving the Standard, or
- d. permission to reprint portions of the Standard.

DISCLAIMER

ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAE's Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS

ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE.

CONTENTS

ANSI/ASHRAE Standard 55-2013, Thermal Environmental Conditions for Human Occupancy

SECTION	PAGE
Foreword	2
1 Purpose	2
2 Scope	2
3 Definitions	2
4 General Requirements	4
5 Conditions that Provide Thermal Comfort	4
6 Design Compliance	13
7 Evaluation of Comfort in Existing Buildings	13
8 References	15
Normative Appendix A: Methods for Determining Operative Temperature	16
Normative Appendix B: Computer Program for Calculation of PMV-PPD	17
Informative Appendix C: Conditions that Provide Thermal Comfort	19
Informative Appendix D: Use of Metabolic Rate Data	20
Informative Appendix E: Clothing Insulation	21
Informative Appendix F: Analytical and Graphic Comfort Zone Methods	
Informative Appendix G: Procedure for Evaluating Cooling Effect of Elevated Air Speed Using SET	
Informative Appendix H: Local Discomfort and Variations with Time	
Informative Appendix I: Occupant-Controlled Naturally Conditioned Spaces	
Informative Appendix J: Sample Design Compliance Documentation	
Informative Appendix K: Measurements, Surveys, and Evaluation of Comfort in Existing Spaces: Parts 1 and 2	
Informative Appendix L: Bibliography and Informative References	46
Informative Appendix M: Addenda Description	

NOTE

Approved addenda, errata, or interpretations for this standard can be downloaded free of charge from the ASHRAE Web site at www.ashrae.org/technology.

© 2013 ASHRAE

1791 Tullie Circle NE · Atlanta, GA 30329 · www.ashrae.org · All rights reserved.

ASHRAE is a registered trademark of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ANSI is a registered trademark of the American National Standards Institute. (This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process.)

FOREWORD

ANSI/ASHRAE Standard 55-2013 is the latest edition of Standard 55. This edition incorporates eighteen addenda to the 2010 edition that were written with a renewed focus on application of the standard by practitioners and use of clear, enforceable language.

The core of the standard in Sections 4 and 5 specifies methods to determine thermal environmental conditions (temperature, humidity, air speed, and radiant effects) in buildings and other spaces that a significant proportion of the occupants will find acceptable at a certain metabolic rate and clothing level. The comprehensive analytical method to determine these conditions uses calculation algorithms included in the standard and appendices, all of which are implemented in the ASHRAE Thermal Comfort Tool.⁴

The standard contains a graphical method of compliance, which is familiar to many users, yet is permitted to be used only in limited circumstances. Given the widespread and easy accessibility of computing power and third-party implementations of the analytical method, it is expected that more users will favor the comprehensive analytical methods over the graphical method.

Section 6 contains requirements for demonstrating that a design of an occupied space or building meets the comfort requirements in Sections 4 and 5. Section 7 includes requirements for the measurement and evaluation of existing thermal environments and is also applicable to commissioning.

Since the two personal characteristics of occupants (metabolic rate and clothing level) vary, operating setpoints for buildings are not mandated by this standard.

Standard 55 was first published in 1966 and republished in 1974, 1981, and 1992. Beginning in 2004, it is now updated using ASHRAE's continuous maintenance procedures. According to these procedures, Standard 55 is continuously revised by addenda that are publicly reviewed, approved by ASHRAE and ANSI, and published and posted for free on the ASHRAE website.

The eighteen addenda published since 2010 are summarized in detail in Informative Appendix M, and the most noteworthy changes are summarized here:

- a. The normative body of the standard, comprising Sections 3 through 8, have been rewritten and reorganized. Requirements are more clearly stated, definitions are added to Section 3, and informative supporting information has been moved from the body to informative appendices.
- b. Procedures are clarified and appear in a more sequential manner. For example, a "representative occupant" with representative "clothing insulation" and "metabolic rate" shall be defined as input into thermal comfort calculations.
- c. The cooling effect of air movement now applies to naturally conditioned spaces as well as mechanically condi-

tioned spaces, and in each case correction factors are given that adjust the comfort boundaries when air movement is present.

- d. A new alternate procedure for estimating occupant clothing insulation based on outdoor weather was added. This procedure is based on extensive field research and can be used for design calculations, annual simulations, and control of occupied spaces.
- e. Major revisions to Section 7 procedures for measuring comfort in existing spaces including survey and physical measurement methods and a new section on evaluating and reporting results.
- f. The standard now says that two of the key comfort parameters, air speed and air temperature, must be calculated as an average that the occupant experiences at three heights across the body and over a period of time.

1. PURPOSE

The purpose of this standard is to specify the combinations of indoor thermal environmental factors and personal factors that will produce thermal environmental conditions acceptable to a majority of the occupants within the space.

2. SCOPE

2.1 The environmental factors addressed in this standard are temperature, thermal radiation, humidity, and air speed; the personal factors are those of activity and clothing.

2.2 It is intended that all of the criteria in this standard be applied together since comfort in the indoor environment is complex and responds to the interaction of all of the factors that are addressed.

2.3 This standard specifies thermal environmental conditions acceptable for healthy adults at atmospheric pressure equivalent to altitudes up to 3000 m (10,000 ft) in indoor spaces designed for human occupancy for periods not less than 15 minutes.

2.4 This standard does not address such nonthermal environmental factors as air quality, acoustics, and illumination or other physical, chemical, or biological space contaminants that may affect comfort or health.

3. DEFINITIONS

adaptive model: a model that relates indoor design temperatures or acceptable temperature ranges to outdoor meteorological or climatological parameters. *Note: Adaptive model* is another name for the method described in Section 5.4, "Determining Acceptable Thermal Conditions in Occupant-Controlled Naturally Conditioned Spaces.")

air speed: the rate of air movement at a point, without regard to direction.

air speed, average (V_a): the average air speed surrounding a representative occupant. The average is with respect to location and time. The spatial average is for three heights as defined for average air temperature (t_a) . The air speed is averaged over an interval not less than one and not more than three minutes. Variations that occur over a period greater than three minutes shall be treated as multiple different air speeds.

climate data: hourly, site-specific values of representative meteorological data, such as temperature, wind, speed, solar radiation, and relative humidity. (See Chapter 14 of *ASHRAE Handbook—Fundamentals*³ for data sources.) For cities or urban regions with several climate data entries, and for locations where climate data are not available, the designer shall select available weather or meteorological data that best represents the climate at the building site.

clo: a unit used to express the thermal insulation provided by garments and clothing ensembles, where 1 clo = $0.155 \text{ m}^{2.\circ}\text{C/W}(0.88 \text{ ft}^2 \cdot \text{h}^{\circ}\text{F/Btu})$.

comfort, thermal: that condition of mind that expresses satisfaction with the thermal environment and is assessed by subjective evaluation.

draft: the unwanted local cooling of the body caused by air movement.

environment, acceptable thermal: a thermal environment that a substantial majority (more than 80%) of the occupants find thermally acceptable.

environment, thermal: the thermal environmental conditions that affect a person's heat loss.

exceedance hours: the number of occupied hours within a defined time period in which the environmental conditions in an occupied space are outside the comfort zone.

garment: a single piece of clothing.

generally accepted engineering standard: see ASHRAE/IES Standard 90.1.7

humidity: a general reference to the moisture content of the air. It is expressed in terms of several thermodynamic variables, including vapor pressure, dew-point temperature, wetbulb temperature, humidity ratio, and relative humidity. It is spatially and temporally averaged in the same manner as air temperature. *Note:* Any one of these humidity variables must be used in conjunction with dry-bulb temperature in order to describe a specific air condition.

insulation, clothing (I_{cl}) : the resistance to sensible heat transfer provided by a clothing ensemble (expressed in units of clo). (*Note:* The definition of *clothing insulation* relates to heat transfer from the whole body and, thus, also includes the uncovered parts of the body, such as head and hands.)

insulation, garment (I_{clu}): the increased resistance to sensible heat transfer obtained from adding an individual garment over the nude body (expressed in units of clo).

local thermal discomfort: the thermal discomfort caused by locally specific conditions such as a vertical air temperature difference between the feet and the head, by radiant temperature asymmetry, by local convective cooling (draft), or by contact with a hot or cold floor.

metabolic rate (met): the rate of transformation of chemical energy into heat and mechanical work by metabolic activities of an individual, per unit of skin surface area (expressed in units of met) equal to 58.2 W/m^2 (18.4 Btu/h·ft^2), which is the energy produced per unit skin surface area of an average person seated at rest.

occupant, representative: an individual or composite or average of several individuals that is representative of the population occupying a space for 15 minutes or more.

occupant-controlled naturally conditioned spaces: those spaces where the thermal conditions of the space are regulated primarily by occupant-controlled openings in the envelope.

occupant-controlled openings: openings such as windows or vents that are directly controlled by the occupants of a space. Such openings may be manually controlled or controlled through the use of electrical or mechanical actuators under direct occupant control.

outdoor design condition: the local outdoor environmental conditions represented by climate data at which a heating or cooling system is designed to maintain the specified indoor thermal conditions.

predicted mean vote (PMV): an index that predicts the mean value of the thermal sensation votes (self-reported perceptions) of a large group of persons on a sensation scale expressed from -3 to +3 corresponding to the categories "cold," "cool," "slightly cool," "neutral," "slightly warm," "warm," and "hot."

predicted percentage of dissatisfied (PPD): an index that establishes a quantitative prediction of the percentage of thermally dissatisfied people determined from PMV.

radiant temperature asymmetry: the difference between the plane radiant temperature (t_{pr}) in opposite directions. The vertical radiant temperature asymmetry is with plane radiant temperatures in the upward and downward directions. The horizontal radiant temperature asymmetry is the maximum radiant temperature asymmetry for all horizontal directions. The radiant temperature asymmetry is determined at waist level, 0.6 m (24 in.) for a seated occupant and 1.1 m (43 in.) for a standing occupant. (See Chapter 9 of *ASHRAE Handbook—Fundamentals*³ for a more complete description of plane radiant temperature and radiant asymmetry.)

sensation, thermal: a conscious subjective expression of an occupant's thermal perception of the environment, commonly expressed using the categories "cold," "cool," "slightly cool," "neutral," "slightly warm," "warm," and "hot."

temperature, air: the temperature of the air at a point.

temperature, air average (t_a) : the average air temperature surrounding a representative occupant. The average is with respect to location and time. The spatial average is the numerical average of the air temperature at the ankle level, the waist level, and the head level. These levels are 0.1, 0.6, and 1.1 m (4, 24, and 43 in.) for seated occupants and 0.1, 1.1, and 1.7 m (4, 43, and 67 in.) for standing occupants. Time averaging is over a period not less than three and not more than 15 minutes.

temperature, dew-point (t_{dp}) : the air temperature at which the water vapor in air at a given barometric pressure will condense into a liquid.

temperature, floor (t_f): the surface temperature of the floor where it is in contact with the representative occupants' feet.

temperature, mean daily outdoor air ($\overline{t_{mda(out)}}$): any arithmetic mean for a 24-hour period permitted in Section 5.4 of

the standard. Mean daily outdoor air temperature is used to calculate prevailing mean outdoor air temperature $(\frac{t_{pma(out)}}{t_{pma(out)}})$.

temperature, mean radiant (t_r) : the temperature of a uniform, black enclosure that exchanges the same amount of heat by radiation with the occupant as the actual enclosure. It is a single value for the entire body expressed as a spatial average of the temperature of surfaces surrounding the occupant weighted by their view factors with respect to the occupant. (See Chapter 9 of ASHRAE Handbook—Fundamentals³ for a more complete description of mean radiant temperature.)

temperature, operative (t_o) : the uniform temperature of an imaginary black enclosure and the air within it in which an occupant would exchange the same amount of heat by radiation plus convection as in the actual nonuniform environment; calculated in accordance with Normative Appendix A of this standard. *Note:* See Chapter 9 of *ASHRAE Handbook—Fundamentals*³ for further discussion of operative temperature.)

temperature, plane radiant (t_{pr}) : the uniform temperature of an enclosure in which the incident radiant flux on one side of a small plane element is the same as in the existing environment.

temperature, prevailing mean outdoor air ($t_{pma(out)}$)*k* when used as an input variable in Figure 5.4.2.1 for the adaptive model, this temperature is based on the arithmetic average of the mean daily outdoor temperatures over some period of days as permitted in Section 5.4.2.1.

temperature, standard effective (SET): the temperature of an imaginary environment at 50% rh, <0.1 m/s (20 fpm) average air speed (V_a), and $\overline{t_r} = t_a$, in which the total heat loss from the skin of an imaginary occupant with an activity level of 1.0 met and a clothing level of 0.6 clo is the same as that from a person in the actual environment, with actual clothing and activity level.

zone, comfort: those combinations of air temperature, mean radiant temperature $(\bar{t_r})$, and humidity that are predicted to be an acceptable thermal environment at particular values of air speed, metabolic rate, and clothing insulation (I_{cl}) .

zone, occupied: the region normally occupied by people within a space. In the absence of known occupant locations, the occupied zone is to be between the floor and 1.8 m (6 ft) above the floor and more than 1.0 m (3.3 ft) from outside walls/windows or fixed heating, ventilating, or air-conditioning equipment and 0.3 m (1 ft) from internal walls.

4. GENERAL REQUIREMENTS

4.1 When information is required to be identified in this standard, it shall be documented in accordance with and in addition to the requirements in Section 6.

4.2 Identify all the space types to which the standard is being applied and any locations within a space to which it is not applied.

4.3 For each space type, at least one representative occupant shall be identified. If any known set of occupants is excluded from consideration then these excluded occupants shall be identified.

4.4 For each representative occupant, the metabolic rate (M) in mets and the insulation (I) in clo shall be determined.

4.5 The thermal environment required for comfort is determined according to Section 5 of this standard.

5. CONDITIONS THAT PROVIDE THERMAL COMFORT

5.1 General Requirements. Section 5 of this standard shall be used to determine the acceptable thermal environment for each representative occupant of a space. Section 5.2 is used to determine representative occupant characteristics.

Section 5.3 in its entirety or Section 5.4 in its entirety shall be identified as the approach used in determining the acceptable thermal environment. Section 5.3 shall be permitted to be used in any space, and Section 5.4 shall be permitted to be used only in those spaces that meet the applicability criteria in Section 5.4.1. Determine operative temperature (t_o) in accordance with Normative Appendix A.

This section covers the determination of the following six factors in steady state. All six factors shall be addressed when defining conditions for acceptable thermal comfort:

- a. Metabolic rate
- b. Clothing insulation
- c. Air temperature
- d. Radiant temperature
- e. Air speed
- f. Humidity

Notes:

- 1. It is possible for all six of these factors to vary with time. The first two are characteristics of the occupant and the remaining four are conditions of the thermal environment.
- 2. Average air speed and average air temperature have precise definitions in this standard. See Section 3 for all defined terms.

5.2 Method for Determining Occupant Characteristics 5.2.1 Metabolic Rate

5.2.1.1 Rate for Each Representative Occupant. For each representative occupant, determine the metabolic rate associated with the occupant's activities. Averaged metabolic rates shall not be used to represent multiple occupants with significantly different metabolic rates.

Example: The customers in a restaurant may have a metabolic rate near 1.0 met, while the servers may have a metabolic rate closer to 2.0 met. Each of these groups of occupants shall be considered separately in determining the conditions required for comfort. In some situations such as this, it will not be possible to provide an acceptable level or the same level of comfort to all disparate groups of occupants.

5.2.1.2 Rate Determination. Use one or a combination of the following methods to determine metabolic rate:

a. Use the data presented in Table 5.2.1.2 for the task most comparable to the activity of the representative occupant. Where a range is given, select a single value within that range based on the characteristics of the activity.

Metabolic Rat			
Activity	Met Units	W/m ²	Btu/h·ft ²
Resting			
Sleeping	0.7	40	13
Reclining	0.8	45	15
Seated, quiet	1.0	60	18
Standing, relaxed	1.2	70	22
Walking (on level surface)			
0.9 m/s, 3.2 km/h, 2.0 mph	2.0	115	37
1.2 m/s, 4.3 km/h, 2.7 mph	2.6	150	48
1.8 m/s, 6.8 km/h, 4.2 mph	3.8	220	70
Office Activities			
Reading, seated	1.0	55	18
Writing	1.0	60	18
Typing	1.1	65	20
Filing, seated	1.2	70	22
Filing, standing	1.4	80	26
Walking about	1.7	100	31
Lifting/packing	2.1	120	39
Driving/Flying			
Automobile	1.0–2.0	60–115	18–37
Aircraft, routine	1.2	70	22
Aircraft, instrument landing	1.8	105	33
Aircraft, combat	2.4	140	44
Heavy vehicle	3.2	185	59
Miscellaneous Occupational Activities			
Cooking	1.6–2.0	95–115	29–37
House cleaning	2.0–3.4	115-200	37–63
Seated, heavy limb movement	2.2	130	41
Machine work			
sawing (table saw)	1.8	105	33
light (electrical industry)	2.0–2.4	115–140	37–44
heavy	4.0	235	74
Handling 50 kg (100 lb) bags	4.0	235	74
Pick and shovel work	4.0–4.8	235–280	74–88
Miscellaneous Leisure Activities			
Dancing, social	2.4–4.4	140–255	44-81
Calisthenics/exercise	3.0–4.0	175–235	55–74
Tennis, single	3.6–4.0	210-270	66–74
Basketball	5.0-7.6	290–440	90–140
Wrestling, competitive	7.0-8.7	410-505	130–160

Clothing Description	Garments Included [*]	I _{cl} (clo)
Trousers	1) Trousers, short-sleeve shirt	0.57
	2) Trousers, long-sleeve shirt	0.61
	3) #2 plus suit jacket	0.96
	4) #2 plus suit jacket, vest, T-shirt	1.14
	5) #2 plus long-sleeve sweater, T-shirt	1.01
	6) #5 plus suit jacket, long underwear bottoms	1.30
Skirts/Dresses	7) Knee-length skirt, short-sleeve shirt (sandals)	0.54
	8) Knee-length skirt, long-sleeve shirt, full slip	0.67
	9) Knee-length skirt, long-sleeve shirt, half slip, long-sleeve sweater	1.10
	10) Knee-length skirt, long-sleeve shirt, half slip, suit jacket	1.04
	11) Ankle-length skirt, long-sleeve shirt, suit jacket	1.10
Shorts	12) Walking shorts, short-sleeve shirt	0.36
Overalls/Coveralls	13) Long-sleeve coveralls, T-shirt	0.72
	14) Overalls, long-sleeve shirt, T-shirt	0.89
	15) Insulated coveralls, long-sleeve thermal underwear tops and bottoms	1.37
Athletic	16) Sweat pants, long-sleeve sweatshirt	0.74
Sleepwear	17) Long-sleeve pajama tops, long pajama trousers, short 3/4 length robe (slippers, no socks)	0.96

* All clothing ensembles, except where otherwise indicated in parentheses, include shoes, socks, and briefs or panties. All skirt/dress clothing ensembles include panty hose and no additional socks.

- b. Interpolate between or extrapolate from the values given in Table 5.2.1.2.
- c. Use estimation and/or measurement methods described in Chapter 9 of *ASHRAE Handbook—Fundamentals*.³
- d. Use other approved engineering or physiological methods.

5.2.1.3 Time-Weighted Averaging. Use a time-weighted average metabolic rate for individuals with activities that vary. Such averaging shall not be applied when an activity persists for more than one hour. In that case, two distinct metabolic rates shall be used.

Example: A person who spends 30 minutes out of each hour "lifting/packing," 15 minutes "filing, standing," and 15 minutes "walking about" has an average metabolic rate of $0.50 \times 2.1 + 0.25 \times 1.4 + 0.25 \times 1.7 = 1.8$ met. However, a person who is engaged in "lifting/packing" for more than one hour and then "filing, standing" for more than one hour shall be treated as having two distinct metabolic rates.

5.2.1.4 High Metabolic Rates. This standard does not apply to occupants whose time-averaged metabolic rate exceeds 2.0 met.

5.2.2 Clothing Insulation

5.2.2.1 Insulation for Each Representative Occupant

5.2.2.1.1 For each representative occupant, determine the clothing insulation (I_{cl}) in clo.

5.2.2.1.2 Averaged clothing insulation (I_{cl}) shall not be used to represent multiple occupants with significantly different clothing insulation.

Exception: Where individuals are free to adjust clothing to account for individual differences in response to the thermal environment, it is permitted to use a single representative occupant with an average clothing insulation (I_{cl}) value to represent multiple individuals.

5.2.2.2 Insulation Determination. Use one or a combination of the following methods to determine clothing insulation (I_{cl}) :

- a. Use the data presented in Table 5.2.2.2A for the expected ensemble of each representative occupant.
- b. Add or subtract the insulation of individual garments in Table 5.2.2.2B from the ensembles in Table 5.2.2.2A to determine the insulation of ensembles not listed.
- c. Determine a complete clothing ensemble using the sum of the individual values listed for each item of clothing in the ensemble in Table 5.2.2.2B.
- d. It is permitted, but not required, to adjust any of the above methods for seated occupants using Table 5.2.2.2C.
- e. For moving occupants, it is permitted but not required to adjust any of the above methods using the following formula:

$$I_{cl, active} = I_{cl} \times (0.6 + 0.4/M)$$

1.2 met < M < 2.0 met

where M is the metabolic rate in mets and I_{cl} is the insulation without movement.

f. Interpolate between or extrapolate from the values given in Tables 5.2.2.2B and 5.2.2.2C.

Garment Description ^a	I _{clu} (clo)	Garment Description ^a	<i>I_{clu}</i> (clo)
Underwear		Dress and Skirts ^b	
Bra	0.01	Skirt (thin) mm	0.14
Panties	0.03	Skirt (thick)	0.23
Men's briefs	0.04	Sleeveless, scoop neck (thin)	0.23
T-shirt	0.08	Sleeveless, scoop neck (thick), i.e., jumper	0.27
Half-slip	0.14	Short-sleeve shirtdress (thin)	0.29
Long underwear bottoms	0.15	Long-sleeve shirtdress (thin)	0.33
Full slip	0.16	Long-sleeve shirtdress (thick)	0.47
Long underwear top	0.20	Sweaters	
Footwear		Sleeveless vest (thin)	0.13
Ankle-length athletic socks	0.02	Sleeveless vest (thick)	0.22
Panty hose/stockings	0.02	Long-sleeve (thin)	0.25
Sandals/thongs	0.02	Long-sleeve (thick)	0.36
Shoes	0.02	Suit Jackets and Vests ^c	
Slippers (quilted, pile lined)	0.03	Sleeveless vest (thin)	0.10
Calf-length socks	0.03	Sleeveless vest (thick)	0.17
Knee socks (thick)	0.06	Single-breasted (thin)	0.36
Boots	0.10	Single-breasted (thick)	0.44
Shirts and Blouses		Double-breasted (thin)	0.42
Sleeveless/scoop-neck blouse	0.12	Double-breasted (thick)	0.48
Short-sleeve knit sport shirt	0.17	Sleepwear and Robes	
Short-sleeve dress shirt	0.19	Sleeveless short gown (thin)	0.18
Long-sleeve dress shirt	0.25	Sleeveless long gown (thin)	0.20
Long-sleeve flannel shirt	0.34	Short-sleeve hospital gown	0.31
Long-sleeve sweatshirt	0.34	Short-sleeve short robe (thin)	0.34
Frousers and Coveralls		Short-sleeve pajamas (thin)	0.42
Short shorts	0.06	Long-sleeve long gown (thick)	0.46
Walking shorts	0.08	Long-sleeve short wrap robe (thick)	0.48
Straight trousers (thin)	0.15	Long-sleeve pajamas (thick)	0.57
Straight trousers (thick)	0.24	Long-sleeve long wrap robe (thick)	0.69
Sweatpants	0.28		
Overalls	0.30		
Coveralls	0.49		

a. "Thin" refers to garments made of lightweight, thin fabrics often worn in the summer; "thick" refers to garments made of heavyweight, thick fabrics often worn in the winter.

b. Knee-length dresses and skirts.c. Lined vests.

TABLE 5.2.2.2C Added Insulation when Sitting on a Chair (Applicable to Clothing Ensembles with Standing Insulation Values of 0.5 clo < I_{cl} < 1.2 clo)

(9
Net chair ^a	0.00 clo
Metal chair	0.00 clo
Wooden side arm chair ^b	0.00 clo
Wooden stool	+0.01 clo
Standard office chair	+0.10 clo
Executive chair	+0.15 clo

a. A chair constructed from thin, widely spaced cords that provide no thermal insulation.

b. Note: this chair was used in most of the basic studies of thermal comfort that were used to establish the PMV-PPD index.

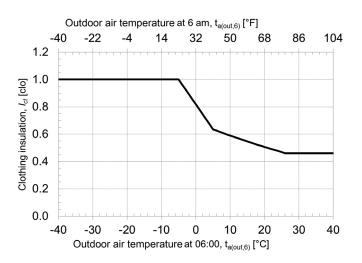


FIGURE 5.2.2.2 Representative clothing insulation (I_{cl}) as a function of outdoor air temperature at 06:00 a.m.

- g. Use Figure 5.2.2.2 to determine the clothing insulation (I_{cl}) of a representative occupant for a day as a function of outdoor air temperature at 06:00 a.m., $t_{a(out, 6)}$.
- **Exception:** The clothing insulation (I_{cl}) determined according to Figure 5.2.2.2 may be adjusted to higher or lower values to account for unique dress code or cultural norms using other methods in Section 5.2.2.2 or approved engineering methods.
- h. Use measurement with thermal manikins or other approved engineering methods.

5.2.2.3 Limits of Applicability. This standard does not apply to occupants

- a. whose clothing insulation exceeds 1.5 clo;
- b. whose clothing is highly impermeable to moisture transport (e.g., chemical protective clothing or rain gear); or
- c. who are sleeping, reclining in contact with bedding, or able to adjust blankets or bedding.

5.3 General Method for Determining Acceptable Thermal Conditions in Occupied Spaces. Section 5.3 is permitted to be used to determine the requirements for thermal comfort in all occupied spaces within the scope of this standard. The requirements of Sections 5.3.1 or 5.3.2, 5.3.4, and 5.3.5 must be met.

Note: Average air speed and average air temperature have precise definitions in this standard. See Section 3 for all defined terms.

5.3.1 Graphic Comfort Zone Method

5.3.1.1 Applicability. Use of this method shall be limited to representative occupants with metabolic rates between 1.0 and 1.3 met and clothing insulation (I_{cl}) between 0.5 and 1.0 clo. Average air speed (V_a) greater than 0.2 m/s (40 fpm) requires the use of Section 5.3.3.

The Graphic Comfort Zone is limited to a humidity ratio at or below 0.012 kg·H₂O/kg dry air (0.012 lb·H₂O/lb dry air), which corresponds to a water vapor pressure of 1.910 kPa (0.277 psi) at standard pressure or a dew-point temperature (t_{dp}) of 16.8°C (62.2°F). **5.3.1.2 Methodology.** Figure 5.3.1 specifies the comfort zone for environments that meet the above criteria. Two zones are shown—one for 0.5 clo of clothing insulation (I_{cl}) and one for 1.0 clo of insulation.

Comfort zones for intermediate values of clothing insulation (I_{cl}) shall be determined by linear interpolation between the limits for 0.5 and 1.0 clo using the following relationships:

$$t_{min, Icl} = [(I_{cl} - 0.5 \text{ clo}) t_{min, I.0 clo} + (1.0 \text{ clo} - I_{cl}) t_{min, 0.5clo}]/0.5 \text{ clo}$$
$$t_{max, Icl} = [(I_{cl} - 0.5 \text{ clo}) t_{max, I.0 clo} + (1.0 \text{ clo} - I_{cl}) t_{max, 0.5clo}]/0.5 \text{ clo}$$

where

t _{max, Icl}	=	upper operative temperature (t_o) limit for clothing insulation (I_{cl})
t _{min, Icl}	=	lower operative temperature (t_o) limit for clothing insulation (I_{cl})
I_{cl}	=	thermal insulation of the clothing in question

 thermal insulation of the clothing in question, clo

Average air speeds (V_a) greater than 0.2 m/s (40 fpm) increase the lower and upper operative temperature (t_o) limit for the comfort zone in accordance with Section 5.3.3.

5.3.2 Analytical Comfort Zone Method

5.3.2.1 Applicability. It is permissible to apply the method in this section to all spaces within the scope of this standard where the occupants have activity levels that result in average metabolic rates between 1.0 and 2.0 met. Average air speeds (V_a) greater that 0.20 m/s (40 fpm) require the use of Section 5.3.3.

5.3.2.2 Methodology. The computer code in Normative Appendix B is to be used with this standard.⁴ Compliance is achieved if -0.5 < PMV < +0.5. Alternative methods are permitted. If any other method is used, it is the user's responsibility to verify and document that the method used yields the same results. The *ASHRAE Thermal Comfort Tool*⁴ is permitted to be used to comply with this section.

Note: See Informative Appendix K for more explanation of PMV and its relationship to PPD (Predicted Percentage Dissatisfied).

5.3.3 Elevated Air Speed. This section is permitted to be used to increase the maximum allowable operative temperature (t_o) and maximum allowable average air speed (V_a) determined from Sections 5.3.1 and 5.3.2, provided that the conditions described in Sections 5.3.3.1 and 5.3.3.2 are met.

The Standard Effective Temperature (SET) model in the *ASHRAE Thermal Comfort Tool*⁴ is used to evaluate all cases of comfort under elevated air speed above 0.2 m/s (40fpm). Figure 5.3.3A represents two particular cases of equal skin heat loss contours computed by the SET model and shall be permitted as a compliance method for the conditions specified in the figure.

Notes:

a. The SET model is available as part of the *ASHRAE Thermal Comfort Tool*,⁴ as described in Informative

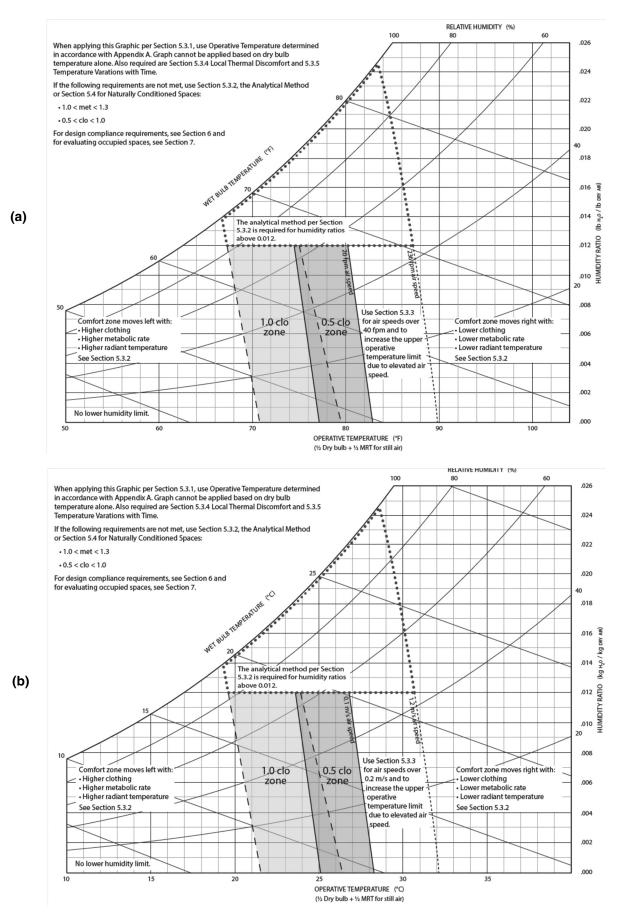


FIGURE 5.3.1 Graphic Comfort Zone Method: Acceptable range of operative temperature (t_0) and humidity for spaces that meet the criteria specified in Section 5.3.1 (1.0 \leq met < 1.3; 0.5 < clo < 1.0)—(a) I-P and (b) SI.

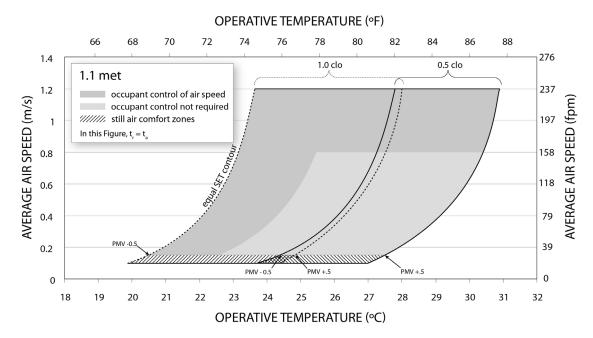


FIGURE 5.3.3A Acceptable ranges of operative temperature (t_o) and average air speed (V_a) for the 1.0 and 0.5 clo comfort zone presented in Figure 5.3.1.1, at humidity ratio 0.010.

Appendix G of this standard. Any other codings of the SET model must be validated against this code.

b. The flowchart in Figure 5.3.3B describes the steps for determining comfort under elevated air speed.

5.3.3.1 Limits to Average Air (V_a) Speed with Occupant Control. When control of local air speed is provided to occupants, the maximum air speed shall be 1.2 m/s (240 fpm) for the SET model and Figure 5.3.3A.

When using either method, control shall be directly accessible to occupants and be provided either (a) for every six occupants or fewer or (b) for every $84 \text{ m}^2 (900 \text{ ft}^2)$ or less. The range of control shall encompass air speeds suitable for sedentary occupants. The air speed should be adjustable continuously or in maximum steps of 0.25 m/s (50 fpm) as measured at the occupant's location.

Note: These limits are shown by the fully bounded area for each clothing level in Figure 5.3.3A.

Exception: In multi-occupant spaces where groups gather for shared activities, such as classrooms and conference rooms, at least one control shall be provided for each space, regardless of size. Multi-occupant spaces that can be subdivided by moveable walls shall have one control for each space subdivision.

The air speed control must extend to still air 0.2 m/s (40 fpm) as measured at the occupant's location and be adjustable continuously or in maximum steps of 0.25 m/s (50 fpm) as measured at the occupant's location.

Exception: Above activity levels of 1.3 met, the 1.2 m/s (240 fpm) limit does not apply.

5.3.3.2 Limits to Average Air Speed (V_a) without Occupant Control. If occupants do not have control over the local air speed meeting the requirements of Section 5.3.3.1, the following limits apply to the SET model and Figure 5.3.3A.

- a. For operative temperatures (t_o) above 25.5°C (77.9°F), the upper limit to average air speed (V_a) shall be 0.8 m/s (160 fpm).
- b. For operative temperatures (t_o) below 22.5°C (72.5°F), the limit to average air speed (V_a) shall be 0.15 m/s (30 fpm).
- c. For operative temperatures (t_o) between 22.5°C and 25.5°C (72.5°F and 77.9°F), the upper limit to average air speed (V_a) shall follow the curve shown between the dark and light shaded areas in Figure 5.3.3A. It is acceptable to approximate the curve in I-P and SI units by the following equation:

$$V = 50.49 - 4.4047 t_a + 0.096425(t_a)^2$$
 (m/s, °C)

$$V = 31375.7 - 857.295 t_a + 5.86288(t_a)^2$$
 (fpm, °F)

Note: These limits are shown by the light gray area in Figure 5.3.3A

Exception: Above activity levels of 1.3 met, the limits in Section 5.3.3.2 do not apply when using the SET model and Figure 5.3.3A.

5.3.4 Local Thermal Discomfort

5.3.4.1 Applicability. The requirements specified in this section are required to be met only when representative occupants meet both of the following criteria:

- a. Have clothing insulation (I_{cl}) less than 0.7 clo
- b. Are engaged in physical activity with metabolic rates below 1.3 met

For the purpose of compliance with this section, representative occupants' ankle level is 0.1 m (4 in.) above the floor and head level is 1.1 m (43 in.) for seated occupants and 1.7 m (67 in.) for standing occupants.

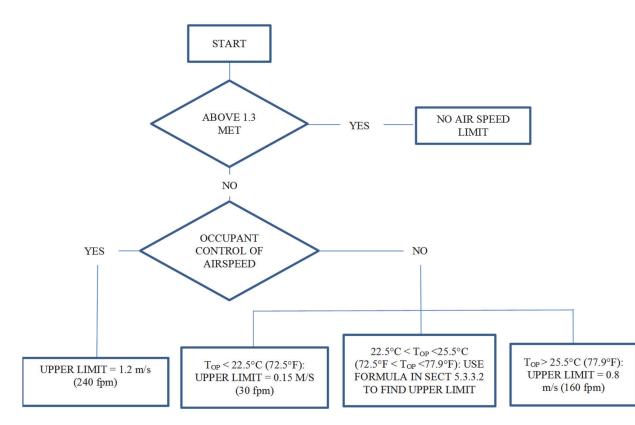


FIGURE 5.3.3B Flowchart for determining limits to airspeed inputs in SET model.

TABLE 5.3.4.2 Allowable Radiant Temperature Asymmetry

Radiant Temperature Asymmetry °C (°F)			
Ceiling Warmer than Floor	Ceiling Cooler than Floor	Wall Warmer than Air	Wall Cooler than Air
<5 (9.0)	<14 (25.2)	<23 (41.4)	<10 (18.0)

Note: The standard does not contain requirements for standing occupants when all the representative occupants are seated. Many standing occupants have met rates greater than 1.3 (see Section 5.2.1), and by criterion (b) above, the requirements of Section 5.3.4 do not apply to them.

5.3.4.2 Radiant Temperature Asymmetry. Radiant temperature asymmetry shall not exceed the values in Table 5.3.4.2.

5.3.4.3 Draft. At operative temperatures (t_o) below 22.5°C (72.5°F), average air speed (V_a) caused by the building, its fenestration, and its HVAC system shall not exceed 0.15 m/s (30 fpm). This limit does not require consideration of air movement produced by office equipment or occupants.

Exception: Higher average air speeds (V_a) that are permitted by Section 5.3.3

5.3.4.4 Vertical Air Temperature Difference. Air temperature difference between head level and ankle level shall not exceed $3^{\circ}C$ (5.4°F) (see note in Section 5.3.4.1).

5.3.4.5 Floor Surface Temperature. When representative occupants are seated with feet in contact with the floor,

TABLE 5.3.5.3 Limits on Temperature Drifts and Ramps

Time Period, h	0.25	0.5	1	2	4
Maximum Operative Temperature (t _o) Change Allowed, °C (°F)				2.8 (5.0)	

floor surface temperatures within the occupied zone shall be 19°C to 29°C (66.2°F to 84.2°F).

5.3.5 Temperature Variations with Time

5.3.5.1 Applicability. The fluctuation requirements of this section shall be met when they are not under the direct control of the individual occupant (e.g., cycling from thermostatic control).

5.3.5.2 Cyclic Variations. Cyclic variations in operative temperature (t_o) that have a period not greater than 15 minutes shall have a peak-to-peak amplitude no greater than 1.1°C (2.0°F).

5.3.5.3 Drifts or Ramps. Monotonic, noncyclic changes in operative temperature (t_o) and cyclic variations with a period greater than 15 minutes shall not exceed the most restrictive requirements from Table 5.3.5.3. For example, the operative temperature may not change more than 2.2°C (4.0°F) during a 1.0 h period, and it also may not change more than 1.1°C (2.0°F) during any 0.25 h period within that 1.0 h period.

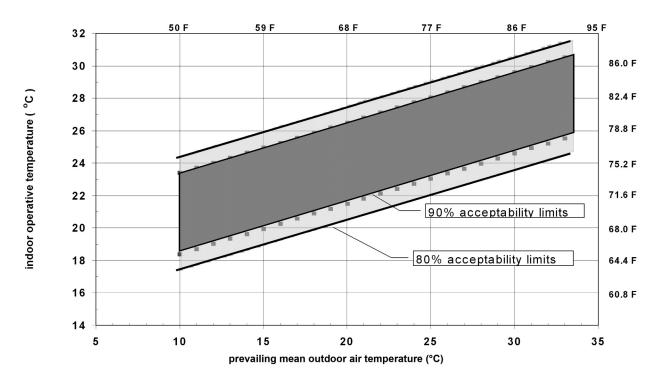


FIGURE 5.4.2 Acceptable operative temperature (t_o) ranges for naturally conditioned spaces.

5.4 Determining Acceptable Thermal Conditions in Occupant-Controlled Naturally Conditioned Spaces

5.4.1 Applicability. This method defines acceptable thermal environments only for occupant-controlled naturally conditioned spaces that meet all of the following criteria:

- a. There is no mechanical cooling system (e.g., refrigerated air conditioning, radiant cooling, or desiccant cooling) installed. No heating system is in operation.
- b. Representative occupants have metabolic rates ranging from 1.0 to 1.3 met.
- c. Representative occupants are free to adapt their clothing to the indoor and/or outdoor thermal conditions within a range at least as wide as 0.5 to 1.0 clo.
- d. The prevailing mean outdoor temperature is greater than $10^{\circ}C (50^{\circ}F)$ and less than $33.5^{\circ}C (92.3^{\circ}F)$.

5.4.2 Methodology. The allowable indoor operative temperatures (t_o) shall be determined from Figure 5.4.2 using the 80% acceptability limits or the equations in Section 5.4.2.2.

Note: The 90% acceptability limits are included for information only (see Informative Appendix I for further guidance).

5.4.2.1 The prevailing mean outdoor air temperature $(\overline{t_{pma(out)}})$ shall be determined in accordance with all of the following.

5.4.2.1.1 It shall be based on no fewer than seven and no more than 30 sequential days prior to the day in question.

5.4.2.1.2 It shall be a simple arithmetic mean of all of the mean daily outdoor air temperatures $(\overline{t_{mda(out)}})$ of all the sequential days in Section 5.4.2.1.1.

Exception: Weighting methods are permitted, provided that the weighting curve continually decreases towards the more distant days such that the weight applied to a day is between 0.6 and 0.9 of that applied to the subsequent day. For this option, the upper limit on the number of days in the sequence does not apply. (See Informative Appendix I for example calculation.)

Mean daily outdoor air temperature $(t_{mda(out)})$ for each of the sequential days in Section 5.4.2.1.1 shall be the simple arithmetic mean of all the outdoor dry-bulb temperature observations for the 24-hour day. The quantity of measurements shall be no less than two and in that case shall be the minimum and maximum for the day. When using three or more measurements, the time periods shall be evenly spaced.

5.4.2.1.3 Observations in Section 5.4.2.1 shall be from the nearest approved meteorological station, public or private, or Typical Meteorological Year (TMY) weather file.

Exception: When weather data to calculate the prevailing mean outdoor air temperature $(\overline{t_{pma(out)}})$ are not available, it is permitted to use as the prevailing mean the published meteorological monthly means for each calendar month. It is permitted to interpolate between monthly means.

5.4.2.2 It shall be permitted to use the following equations, which correspond to the acceptable operative temperature (t_o) ranges in Figure 5.4.2:

Upper 80% acceptability limit (°C) = 0.31 $\overline{t_{pma(out)}}$ + 21.3

Upper 80% acceptability limit (°F) = 0.31 $\overline{t_{pma(out)}}$ + 60.5

TABLE 5.4.2.4 Increases in Acceptable Operative
Temperature Limits (Δt_0) in Occupant-Controlled,
Naturally Conditioned Spaces (Figure 5.4.2) Resulting
from Increasing Air Speed above 0.3 m/s (59 fpm)

Average	Average	Average
Air Speed (<i>V_a</i>)	Air Speed (<i>V_a</i>)	Air Speed (<i>V_a</i>)
0.6 m/s (118 fpm)	0.9 m/s (177 fpm)	1.2 m/s (236 fpm)
1.2°C (2.2°F)	1.8°C (3.2°F)	2.2°C (4.0°F)

Lower 80% acceptability limit (°C) = 0.31 $\overline{t_{pma(out)}}$ + 14.3

Lower 80% acceptability limit (°F) = 0.31 $\overline{t_{pma(out)}}$ + 47.9

5.4.2.3 The following effects are already accounted for in Figure 5.4.2 and the equations in Section 5.4.2.2, and therefore it is not required that they be separately evaluated: local thermal discomfort, clothing insulation (I_{cl}) , metabolic rate, humidity, and air speed.

5.4.2.4 If $t_0 > 25^{\circ}$ C (77°F), then it shall be permitted to increase the upper acceptability temperature limits in Figure 5.4.2 and the equations in Section 5.4.2.2 by the corresponding Δt_0 in Table 5.4.2.4.

6. DESIGN COMPLIANCE

6.1 Design. Building systems (i.e., combinations of mechanical systems, control systems, and thermal enclosures) shall be designed so that at outdoor and indoor design conditions they are able to maintain the occupied space(s) at indoor thermal conditions specified by one of the methods in this standard.

The building systems shall be designed so that they are able to maintain the occupied space(s) within the ranges specified for internal conditions in this standard, and within the range of expected operating conditions (indoor and outdoor).

6.2 Documentation. The method and design conditions appropriate for the intended use of the building shall be selected and documented as follows.

Note: Some of the requirements in items (a) through (g) may not be applicable to naturally conditioned buildings.

- a. The method of design compliance shall be stated for each space and/or system: Graphic Comfort Zone Method (Section 5.3.1), Analytical Comfort Zone Method (Section 5.3.2), or the use of Section 5.4 for Occupant-Controlled Naturally Conditioned Spaces.
- b. The design operative temperature (t_o) and humidity (including any tolerance or range), the design outdoor conditions (see Chapter 14 of *ASHRAE Handbook— Fundamentals*³), and total indoor loads shall be stated. The design exceedance hours (See Section 3, "Definitions") shall be documented based on the design conditions used.
- c. Values assumed for comfort parameters used in the calculation of thermal conditions, including operative temperature (t_o) , humidity, average air speed (V_a) , clothing insulation (I_{cl}) , and metabolic rate, shall be stated for heating and cooling design conditions. If an acceptable

level of comfort is not being provided to any representative occupants, this shall be stated. Where Table 5.2.1.2 gives a range, the basis for selecting a single value within that range shall be stated. If the clothing insulation or metabolic rate parameters for a given space are outside the applicable bounds defined by the standard, or if the space is not regularly occupied as defined in Section 2.3, the space shall be clearly identified as not under the scope of the standard.

- d. Local thermal discomfort shall be addressed, at a minimum, by a narrative explanation of why an effect is not likely to exceed Section 5 limits. Where calculations are utilized to determine the effect of local thermal discomfort in accordance with Section 5, the calculation inputs, methods, and results shall be stated.
- e. System equipment capacity shall be provided for each space and/or system documenting performance meeting the design criteria stated. For each unique space, the design system or equipment heating and/or cooling capacity shall meet the thermal loads calculated under the heating and cooling design conditions stated for compliance with this standard.
- f. Where elevated air speed with occupant control is employed to provide acceptable thermal conditions, documentation shall be provided to identify the method and equipment for occupant control.
- g. Air speed, radiant temperature asymmetry, vertical radiant temperature asymmetry, surface temperatures, and temperature variations with time shall be determined in accordance with generally accepted engineering standards (e.g., Chapter 57 of ASHRAE Handbook—HVAC Applications). The method used and quantified selection criteria, characteristics, sizes, and indices that are applicable to the method shall be stated.

Note: See Informative Appendix J for sample compliance documentation.

7. EVALUATION OF COMFORT IN EXISTING BUILDINGS

7.1 Introduction. Evaluation of comfort in existing buildings is not a requirement of this standard. When such evaluation is otherwise required (e.g., by code or another standard) use one of the following methods:

7.1.1 Occupant surveys using Sections 7.2.1, 7.3.1, or 7.4.1.

7.1.2 Environmental measurement using Sections 7.2.2, 7.3.2, 7.3.3, 7.3.4, or 7.4.2.

7.1.3 When using the building automation system as an adjunct to Sections 7.1.1 or 7.1.2, it shall have the characteristics described in Section 7.3.5.

7.2 Criteria for Comfort in Existing Buildings

7.2.1 Comfort Determination from Occupant Surveys. Acceptability and satisfaction are directly determined from the responses of occupants using the scales and comfort limits described in Section 7.3.1.

7.2.2 Prediction of Comfort from Environmental Measurements

7.2.2.1 Mechanically Conditioned Spaces. Use Section 5.3.1.2 to determine the PMV-based comfort zone for the occupants' expected clothing and metabolic rate. The modeled clothing and activity levels of the occupants must be as observed or as expected for the use of the indoor space in question. Use Section 5.3.3 to adjust the comfort zone boundaries for elevated air movement. Occupied zone conditions must also conform to requirements for avoiding local thermal discomfort (as specified in Section 5.3.4) and to limits to rate of temperature change over time, as specified in Section 5.3.5.

Parameters to be measured and/or recorded include the following:

- a. Occupant metabolic rate (met) and clothing (clo) observations
- b. Air temperature and humidity
- c. Mean radiant temperature $(\bar{t_r})$, unless it can be otherwise demonstrated that, within the space, $\bar{t_r}$ is within 1°C (2°F) of t_a
- d. Air speed, unless it can be otherwise demonstrated that, within the space, average air speed (V_a) meets the requirements of Section 5.3.3

7.2.2.2 Naturally Conditioned Spaces. Section 5.4 prescribes the use of the adaptive model for determining the comfort zone boundaries. The air movement extensions to comfort zone boundaries (Table 5.4.2.4) shall be used when elevated air movement is present.

Parameters to be measured include the following:

- a. Indoor air temperature and mean radiant temperature $(\bar{t_r})$
- b. Outdoor air temperature

7.3 Measurement Methods

7.3.1 Surveys of Occupant Responses to Environment. Surveys shall be solicited from the entire occupancy or a representative sample thereof. If more than 45 occupants are solicited, the response rate must exceed 35%. If solicited occupants number between 20 and 45, at least 15 must respond. For under 20 solicited occupants, 80% must respond.

7.3.1.1 Satisfaction Surveys

- a. Thermal satisfaction shall be measured with a scale ending with the choices: "very satisfied" and "very dissatisfied."
- b. Thermal satisfaction surveys shall include diagnostic questions allowing causes of dissatisfaction to be identified.

7.3.1.2 Point-in-Time Surveys

- a. Thermal acceptability questions shall include a continuous or seven-point scale ending with the choices: "very unacceptable" and very acceptable."
- b. Thermal sensation questions shall include the ASHRAE seven-point thermal sensation scale subdivided as follows: cold, cool, slightly cool, neutral, slightly warm, warm, hot.

Point-in-time surveys shall be solicited during times representative of the building's occupancy.

7.3.2 Physical Measurement Positions within the Building

a. *Floor plan:* Thermal environment measurements shall be made in the building at a representative sample of locations where the occupants are known to, or are expected to, spend their time. When performing evaluation of similar spaces in a building, it shall be permitted to select a representative sample of such spaces.

If occupancy distribution cannot be observed or estimated, then the measurement locations shall include both of the following:

- 1. The center of the room or space
- 2. 1.0 m (3.3 ft) inward from the center of each of the room's walls. In the case of exterior walls with windows, the measurement location shall be 1.0 m (3.3 ft) inward from the center of the largest window.

Measurements shall also be taken in locations where the most extreme values of the thermal parameters are observed or estimated to occur (e.g., potentially occupied areas near windows, diffuser outlets, corners, and entries).

b. Height above floor: Air temperature and average air speed (V_a) shall be measured at the 0.1, 0.6, and 1.1 m (4, 24, and 43 in.) levels for seated occupants at the plan locations specified above. Measurements for standing occupants shall be made at the 0.1, 1.1, and 1.7 m (4, 43, and 67 in.) levels. Operative temperature (t_o) or PMV shall be measured or calculated at the 0.6 m (24 in.) level for seated occupants. Floor temperature that may cause local discomfort shall be measured at the surface by contact thermometer or infrared thermometer (Section 5.2.4.4).

Radiant temperature asymmetry that may cause local thermal discomfort (Sections 5.2.4.1) shall be measured in the affected occupants' locations, with the sensor oriented to capture the greatest surface temperature difference.

7.3.3 Timing of Physical Measurements. Measurement periods shall span two hours or more and, in addition, shall represent a sample of the total occupied hours in the period selected for evaluation (year, season, or typical day) or shall take place during periods directly determined to be the critical hours of anticipated occupancy.

Measurement intervals for air temperature, mean radiant temperature $(\bar{t_r})$, and humidity shall be five minutes or less, and for air speed shall be three minutes or less.

7.3.4 Physical Measurement Device Criteria. The measuring instrumentation used shall meet the requirements for measurement range and accuracy given in Table 7.3.4. Air temperature sensors shall be shielded from radiation exchange with the surroundings.

7.3.5 Measurements from Building Automation System (BAS)

7.3.5.1 Location. BAS space sensor locations shall be evaluated against the location criteria in Section 7.3.2.

Quantity	Measurement Range	Accuracy
Air temperature	10°C to 40°C (50°F to 104°F)	±0.2°C (0.4°F)
Mean radiant temperature	10°C to 40°C (50°F to 104°F)	±1°C (2°F)
Plane radiant temperature	0°C to 50°C (32°F to 122°F)	±0.5°C (1°F)
Surface temperature	0°C to 50°C (32°F to 122°F)	±1°C (2°F)
Humidity, relative	25% to 95% rh	±5% rh
Air speed	0.05 to 2 m/s (10 to 400 fpm)	±0.05 m/s (±10 fpm)
Directional radiation	$-35~\text{W/m}^2$ to +35 W/m^2 (–11 Btu/h·ft² to +11 Btu/h·ft²)	$\pm 5 \text{ W/m}^2 (\pm 1.6 \text{ Btu/h·ft}^2)$

7.3.5.2 Precision. BAS space temperature sensor accuracy shall be $0.5^{\circ}C$ (1°F) or less, and space humidity sensor accuracy shall be $\pm 5\%$ rh.

7.3.5.3 Trending Capabilities. The BAS shall have the ability to trend space temperature data at intervals not exceeding 15 minutes over 30 days or longer.

7.3.5.4 Additional Concurrent Data. Data such as equipment status, supply and return air, and water temperatures shall be observed for time periods concurrent with the space temperature data.

7.4 Evaluation Methods

7.4.1 Evaluation Based on Survey Results

a. The probability of occupants satisfied from satisfaction survey scores shall be predicted by dividing the number of votes falling between "just satisfied" and "very satisfied," inclusive, by the total number of votes.

Responses to diagnostic dissatisfaction questions shall be tallied by category.

b. For point-in-time surveys, comfort shall be evaluated using votes on the acceptability and/or thermal sensation scales. On each scale, votes between -1 and +3, inclusive, shall be divided by total votes to obtain the probability of comfort acceptability observed during the survey period.

7.4.2 Evaluation Based on Physical Measurements

of the Thermal Environment. Use one of the following approaches in Section 7.4.2.1 or 7.4.2.2.

7.4.2.1 Approaches to Predicting whether a Thermal Environment is Acceptable at a Specific Instance in Time

a. Mechanically conditioned buildings

- 1. Occupied spaces shall be evaluated using the PMV and SET comfort zone as defined in Sections 5.3.1 and 5.3.3.
- 2. Local thermal discomfort shall be evaluated using the limits to environmental asymmetry prescribed in Section 5.3.4.
- b. Buildings with occupant-controlled operable windows
 - 1. Occupied spaces shall be evaluated using the indoor operative temperature (t_o) contours of the adaptive model comfort zone in Section 5.4, including the contour extensions for average air speeds (V_a) above 0.3 m/s (59 fpm).

7.4.2.2 Approaches to Predicting whether a Thermal Environment is Acceptable over Time. Section 7.4.2.2.1 shall be used to quantify the number of hours in which environmental conditions are outside the comfort zone requirements during occupied hours in the time period of interest. Exceedance is measured by exceedance hours (EH) (see definition in Section 3). Section 7.4.2.2.2 is permitted but not required to be used with Section 7.4.2.2.1.

7.4.2.2.1 Exceedance hours are calculated for the PMV comfort zone and adaptive model comfort zone as follows:

Letting each sum be over occupied hours within the specified period, and comfort indices respective to that hour, for *PMV comfort zone*: EH = ΣH_{disc} , where H_{disc} is a discomfort hour; $H_{disc} = 1$ if |PMV| - 0.5 > 0 and 0 otherwise.

For adaptive model comfort zone, where $H_{>upper}$ and $H_{<lower}$ are discomfort hours outside of comfort zone boundaries t_{upper} and t_{lower} , EH = $\Sigma (H_{>upper} + H_{< lower})$, where $H_{>upper} = 1$ if $t_{op} > t_{upper}$ and 0 otherwise, and $H_{< lower} = 1$ if $t_{op} < t_{lower}$ and 0 otherwise.

Units are in hours. Exceedance hours can also be expressed as a probability by dividing EH by total occupied hours.

7.4.2.2.2 It is permissible to quantify the expected number of episodes of discomfort, rate-of-change exceedances, and local discomfort exceedances, within a time period of interest.

8. REFERENCES

- ISO 7726:1998, Ergonomics of the Thermal Environment— Instruments for Measuring Physical Quantities.
- ^{2.} ISO 7730:2005, Ergonomics of the Thermal Environment— Analytical Determination and Interpretation of Thermal Comfort using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria.
- ^{3.} 2009 ASHRAE Handbook—Fundamentals.
- ^{4.} ASHRAE Thermal Comfort Tool.
- ^{5.} ANSI/ASHRAE Standard 70-2006, Method of Testing for Rating the Performance of Air Outlets and Inlets.
- ^{6.} ANSI/ASHRAE Standard 113-2009, Method of Testing for Room Air Diffusion.
- ^{7.} ANSI/ASHRAE/IES Standard 90.1-2010, Energy Standard for Buildings Except Low-Rise Residential Buildings.

(This is a normative appendix and is part of this standard.)

NORMATIVE APPENDIX A METHODS FOR DETERMINING OPERATIVE TEMPERATURE

Determine operative temperature (t_o) in accordance with one of the following cases or Chapter 9 of *ASHRAE Handbook*—*Fundamentals*.³

Note: Average air speed and average air temperature have precise definitions in this standard. See Section 3 for all defined terms.

Case 1: Average air temperature (t_a) is permitted to be used in place of operative temperature (t_o) when these three conditions are met:

- a. There is no radiant and/or radiant panel heating or radiant panel cooling system.
- b. The area weighted average U-factor of the outside window/wall satisfies the following inequality:

$$U_W < \frac{50}{t_{d,i} - t_{d,e}}$$
(SI)

$$U_W < \frac{15.8}{t_{d,i} - t_{d,e}}$$
 (IP)

where

- U_w = average U-factor of window/wall, W/m²·K (Btu/h·ft²·°F)
- $t_{d,i}$ = internal design temperature, °C (°F)
- $t_{d,e}$ = external design temperature, °C (°F)

c. Window solar heat gain coefficients (SHGC) are less than 0.48.

Case 2: Calculation of the operative temperature (t_o) is based on average air temperature (t_a) and mean-radiant temperature.

Operative temperature (t_o) is permitted to be calculated per the following formula:

$$t_o = At_a + (1 - A)\overline{t_r}$$

where

 $t_o =$ operative temperature

 t_a = average air temperature

 $\bar{t_r}$ = mean radiant temperature (For detailed calculation procedures see the "Thermal Comfort" chapter of most current edition of *ASHRAE Handbook*— *Fundamentals*³.)

A can be selected from the following values as a function of the relative air speed, v_r .

v _r	<0.2 m/s	0.2 to 0.6 m/s	0.6 to 1.0 m/s
	(<40 fpm)	(40 to 120 fpm)	(120 to 200 fpm)
A	0.5	0.6	0.7

Case 3: For representative occupants with metabolic rates between 1.0 and 1.3 met, not in direct sunlight, when the average air speed (V_a) is <0.2 m/s (40 fpm) and where the difference between mean radiant temperature (\bar{t}_r) and average air temperature (t_a) is <4°C (7°F), the operative temperature (t_o) is permitted to be calculated as the mean of the average air temperature and mean radiant temperature.

(This is a normative appendix and is part of this standard.)

NORMATIVE APPENDIX B COMPUTER PROGRAM FOR CALCULATION OF PMV-PPD

(Reference Annex D of ISO 7730. Used with permission from ISO. For additional technical information and an I-P version of the equations in this appendix, refer to the *ASHRAE Thermal Comfort Tool* referenced in Section 8 of this standard. The Thermal Comfort Tool allows for I-P inputs and outputs, but the algorithm is implemented in SI units.)

10	REM	' Computer program (BASIC) for calcu	lation of							
20	REM	' Predicted Mean Vote (PMV) and Pre	dicted Percentad	ge of Dissatisfaction (PPD)						
30	REM	' in accordance with ISO 7730		go of Discussion (1 + D)						
40	CLS:	Print "Data Entry"		: 'data entry						
50	INPUT	" Clothing	(clo)"	; CLO						
60	INPUT	" Metabolic rate	(met)"	; MET						
70	INPUT	" External work, normally around 0	(met)"	; WME						
80	INPUT	" Air Temperature	(C)"	; TA						
90	INPUT	" Mean radiant temperature	(C)"	; TR						
100	INPUT	" Relative air velocity	(m/s)"	: VEL						
110	PRINT	" ENTER EITHER RH OR WATER V	APOR PRESSU	RE BUT NOT BOTH"						
120	INPUT	" Relative humidity	(%)"	; RH						
130	INPUT	"Water vapor pressure	(Pa)"	; PA						
140	DEF FN	PS (T) = exp(16.6536-4030.183/(TA+23	5))	: ' saturated vapor pressure KPa						
150	IF PA=0	THEN PA=RH*10*FNPS (TA)		: ' water vapor pressure, Pa						
160	ICL = .15	5 * CLO		: ' thermal insulation of the clothing in m ² K/W						
170	M = ME	T * 58.15	: ' metabolic rate in W/m ²							
180	W = WN	ΛE * 58.15	: ' external work in W/m ²							
190	MW = N	1 – W	: ' internal heat production in the human body							
200	IF ICL < .	.078 THEN FCL = 1 + 1.29 * ICL ELSE F	CL = 1.05+.645*							
205				: ' clothing area factor						
210	HCF = 12	2.1*SQR (VEL)		: ' heat transf. coefficient by forced convection						
220	TAA = T			: ' air temperature in Kelvin						
230	TRA = T	R + 273		: ' mean radiant temperature in Kelvin						
240	·	CACULATE SURFACE TEMPERA	TURE OF CLOT	THING BY ITERATION						
250	TCLA =	TAA + (35.5-TA) / (3.5*(6.45*ICL+.1))								
255	' first gue	ss for surface temperature of clothing								
260	P1 = IC	L * FCL		: ' calculation term						
270	P2 = P1	* 3.96		: ' calculation term						
280	P3 = P1	* 100		: ' calculation term						
290	P4 = P1	* TAA		: ' calculation term						
300	P5 = 30	8.7 – .028 * MW +P2 * (TRA/100) ^ 4		: ' calculation term						
310	XN = TC	CLA / 100								
320	XF = XM	٨								
330	N =0			: 'N: number of iterations						
340	EPS = .0			: ' stop criteria in iteration						
350		F+XN) / 2								
355		' heat transf. coeff. by natural convection								
360		HCN=2.38*ABS(100*XF-TAA)^.25								
370		IF HCF>HCN THEN HC=HCF ELSE HC=HCN								
380	``	XN=(P5+P4*HC-P2*XF^4) / (100+P3*HC)								
390	N=N+1									
400		0 then goto 550								
410	IF ABS(X	(N-XF) . EPS then goto 350								

420	TCL=100*XN-273		: ' surface temperature of the clothing
430	' HEAT LOSS COMPON	ENTS	
435	" heat loss diff. through skin		
440	HL1 = 3.05*.001*(5733-6.99*MW-PA)		
445	' heat loss by sweating (comfort)		
450	IF MW > 58.15 THEN HL2 = .42 * (MW-58.15)		
	ELSE HL2 = 0!		
455	' latent respiration heat loss		
460	HL3 = 1.7 * .00001 * M * (5867-PA)		
465	' dry respiration heat loss		
470	HL4 = .0014 * M * (34-TA)		
475	' heat loss by radiation		
480	HL5 = 3.96*FCL*(XN^4-(TRA/100)^4)		
485	' heat loss by convection		
490	HL6 = FCL * HC * (TCL-TA)		
500	' CALCULATE PMV AND F	PD	
505	' thermal sensation trans. Coeff.		
510	TS = .303 * EXP(036*M) + .028		
515	' predicted mean vote		
520	PMV = TS * (MW-HL1-HL2-HL3-HL4-HL5-HL6)		
525	' predicted percentage dissat.		
530	PPD=100-95*EXP(03353*PMV^42179*PMV^2)		
540	goto 570		
550	PMV = 99999!		
560	PPD-100		
570	PRINT: PRINT "OUTPUT"		
580	PRINT " Predicted Mean Vote	(PMV)	- " -
	;: PRINT USING "###.####"; PMV		
590	PRINT " Predicted Percentage of Dissatisfied	(PPD)	. "
	;: PRINT USING ###.###": PPD		
600	PRINT: INPUT "NEXT RUN (Y/N) "; R\$		
610	If (R\$="Y" or R\$="y") THEN RUN		
620	END		

Example: Values used to generate the comfort envelope in Figure 5.3.1.

Run	Air T	emp.	RH	Radiant	Temp.	Air S	peed	– Met.	CLO	PMV	PPD
#	°F	С	%	°F	С	FPM	m/s	- Iviet.	CLU		%
1	67.3	19.6	86	67.3	19.6	20	0.10	1.1	1	-0.5	10
2	75.0	23.9	66	75.0	23.9	20	0.10	1.1	1	0.5	10
3	78.2	25.7	15	78.2	25.7	20	0.10	1.1	1	0.5	10
4	70.2	21.2	20	70.2	21.2	20	0.10	1.1	1	-0.5	10
5	74.5	23.6	67	74.5	23.6	20	0.10	1.1	0.5	-0.5	10
6	80.2	26.8	56	80.2	26.8	20	0.10	1.1	0.5	0.5	10
7	82.2	27.9	13	82.2	27.9	20	0.10	1.1	0.5	0.5	10
8	76.5	24.7	16	76.5	24.7	20	0.10	1.1	0.5	-0.5	10

INFORMATIVE APPENDIX C CONDITIONS THAT PROVIDE THERMAL COMFORT

C1. INTRODUCTION

Thermal comfort is that condition of mind that expresses satisfaction with the thermal environment. Because there are large variations, physiologically and psychologically, from person to person, it is difficult to satisfy everyone in a space. The environmental conditions required for comfort are not the same for everyone. Extensive laboratory and field data have been collected that provide the necessary statistical data to define conditions that a specified percentage of occupants will find thermally comfortable.

The operative temperature (t_o) and humidity shown on the psychrometric chart in Figure 5.3.1 (graphical method) are for 80% occupant acceptability. This is based on a 10% dissatisfaction criterion for general (whole body) thermal comfort based on the PMV-PPD index, plus an additional 10% dissatisfaction that may occur on average from local (partial body) thermal discomfort (see below). Normative Appendix B provides a list of inputs and outputs used in the PMV/PPD computer program to generate these graphs.

C2. THERMAL COMFORT FACTORS

Six primary factors must be addressed when defining conditions for thermal comfort. A number of other, secondary factors affect comfort in some circumstances. The six primary factors are listed below.

- 1. Metabolic rate
- 2. Clothing insulation
- 3. Air temperature
- 4. Radiant temperature
- 5. Air speed
- 6. Humidity

The first two factors are characteristics of the occupants, and the remaining four factors are conditions of the thermal environment. Detailed descriptions of these factors are presented in Section 3 and Informative Appendices C, D, and E. These must be clearly understood in order to use the methods of Section 5 effectively.

C3. VARIATION AMONG OCCUPANTS

For each occupant, the activity level, represented as metabolic rate (M) in mets, and the clothing worn by the occupants, represented as insulation (I) in clo, must be considered in applying this standard. When there are substantial differences in physical activity and/or clothing for occupants of a space, these differences must be considered.

In some cases it will not be possible to achieve an acceptable thermal environment for all occupants of a space due to individual differences, including activity and/or clothing. If the requirements are not met for some known set of occupants, then the Standard requires that these occupants be identified.

C4. TEMPORAL VARIATION

It is possible for all six of these factors to vary with time. This standard only addresses thermal comfort in a steady state (with some limited specifications for temperature variations with time in Section 5.3.5).

Note: As a result, people entering a space that meets the requirements of this standard may not immediately find the conditions comfortable if they have experienced different environmental conditions just prior to entering the space. The effect of prior exposure or activity may affect comfort perceptions for approximately one hour.

C5. LOCAL THERMAL DISCOMFORT

Nonuniformity is addressed in Section 5.3.4.

Note: Factors 1 through 6 may be nonuniform over an occupant's body, and this nonuniformity may be an important consideration in determining thermal comfort.

C6. VARIATION IN ACTIVITY LEVEL

The vast majority of the available thermal comfort data pertains to sedentary or near-sedentary physical activity levels typical of office work. This standard is intended primarily for these conditions. However, it is acceptable to use the standard to determine appropriate environmental conditions for moderately elevated activity. It does not apply to sleeping or bed rest. The body of available data does not contain significant information regarding the comfort requirements of children, the disabled, or the infirm. It is acceptable to apply the information in this standard to these types of occupants if it is applied judiciously to groups of occupants, such as those found in classroom situations.

C7. NATURALLY CONDITIONED SPACES

Section 5.3 contains the methodology that shall be used for most applications. The conditions required for thermal comfort in spaces that are naturally conditioned are not necessarily the same as those conditions required for other indoor spaces. Field experiments have shown that in naturally conditioned spaces, where occupants have control of operable windows, the subjective notion of comfort is different because of different thermal experiences, availability of control, and resulting shifts in occupant expectations. Section 5.4 specifies criteria required for a space to be considered naturally conditioned. The methods of Section 5.4 may, as an option, be applied to spaces that meet these criteria. The methods of Section 5.4 may not be applied to other spaces.

INFORMATIVE APPENDIX D USE OF METABOLIC RATE DATA

The data presented in Table 5.2.1.2 are reproduced from Chapter 9 of *ASHRAE Handbook—Fundamentals*.³ The values in the table represent typical metabolic rates per unit of skin surface area for an average adult (DuBois area = 1.8 m^2 [19.6 ft²]) for activities performed continuously. This Handbook chapter provides additional information for estimating and measuring activity levels. General guidelines for the use of these data follow.

Every activity that may be of interest is not included in this table. Users of this standard should use their judgment to match the activities being considered to comparable activities in the table. Some of the data in this table are reported as a range and some as a single value. The format for a given entry is based on the original data source and is *not* an indication of when a range of values should or should not be utilized. For all activities except sedentary activities, the metabolic rate for a given activity is likely to have a substantial range of variation that depends on the individual performing the task and the circumstances under which the task is performed.

It is permissible to use a time-weighted average metabolic rate for individuals with activities that vary over a period of one hour or less. For example, a person who typically spends 30 minutes out of each hour "lifting/packing," 15 minutes "filing, standing," and 15 minutes "walking about" has an average metabolic rate of $0.50 \times 2.1 + 0.25 \times 1.4 + 0.25 \times 1.7 = 1.8$ met. Such averaging should not be applied when the period of variation is greater than one hour. For example, a person who is engaged in "lifting/packing" for more than one hour and then "filing, standing" for more than one hour should be treated as having two distinct metabolic rates.

As metabolic rates increase above 1.0 met, the evaporation of sweat becomes an increasingly important factor for thermal comfort. The PMV method does not fully account for this factor, and this standard should not be applied to situations where the time-averaged metabolic rate is above 2.0 met.

Note: Rest breaks (scheduled or hidden) or other operational factors (get parts, move products, etc.) combine to limit time-weighted metabolic rates to about 2.0 met in most applications.

Time averaging of metabolic rates only applies to an individual. The metabolic rates associated with the activities of various individuals in a space may *not* be averaged to find a single, average metabolic rate to be applied to that space. The range of activities of different individuals in the space and the environmental conditions required for those activities should be considered in applying this standard. For example, the customers in a restaurant may have a metabolic rate closer to 2.0 met. Each of these groups of occupants should be considered separately in determining the conditions required for comfort. In some situations, it will not be possible to provide an acceptable level or the same level of comfort to all disparate groups of occupants (e.g., restaurant customers and servers).

The metabolic rates in Table 5.2.1.2 were determined when the subjects' thermal sensation was close to neutral. It is not yet known the extent to which people may modify their metabolic rate to decrease warm discomfort.

INFORMATIVE APPENDIX E CLOTHING INSULATION

The amount of thermal insulation worn by a person has a substantial impact on thermal comfort and is an important variable in applying this standard. Clothing insulation is expressed in a number of ways. In this standard, the clothing insulation (I_{cl}) of an ensemble expressed as a clo value is used. Users not familiar with clothing insulation terminology are referred to Chapter 9 of ASHRAE Handbook—Fundamentals³ for more information.

The insulation provided by clothing can be determined by a variety of means, and if accurate data are available from other sources, such as measurement with thermal manikins, these data are acceptable for use. When such information is not available, the tables in this standard may be used to estimate clothing insulation (I_{cl}) using one of the methods described below. Regardless of the source of the clothing insulation value, this standard is not intended for use with clothing ensembles with more than 1.5 clo of insulation. This standard is not intended for use when occupants wear clothing that is highly impermeable to moisture transport (e.g., chemical protective clothing or rain gear).

Four methods for estimating clothing insulation (I_{cl}) are presented. Methods 1, 2, and 3 are listed in order of accuracy. The tables used in the standard are derived from Chapter 9 of *ASHRAE Handbook*—*Fundamentals*.³

- Method 1: Table 5.2.2.2A of this standard lists the insulation provided by a variety of common clothing ensembles. If the ensemble in question matches reasonably well with one of the ensembles in this table, then the indicated value of I_{cl} should be used.
- Method 2: Table 5.2.2.2B of this standard presents the thermal insulation of a variety of individual garments. It is acceptable to add or subtract these garments from the ensembles in Table 5.2.2.2A to estimate the insulation of ensembles that differ in garment composition from those in Table 5.2.2.2A. For example, if long underwear bottoms are added to Ensemble 5 in Table 5.2.2.2A, the insulation of the resulting ensemble is estimated as

$$I_{cl} = 1.01 + 0.15 = 1.16$$
 clo

• Method 3: It is acceptable to define a complete clothing ensemble using a combination of the garments listed in Table 5.2.2.2B of this standard. The insulation of the ensemble is estimated as the sum of the individual values listed in Table 5.2.2.2B. For example, the estimated insulation of an ensemble consisting of overalls worn with a flannel shirt, t-shirt, briefs, boots, and calf-length socks is

$$I_{cl} = 0.30 + 0.34 + 0.08 + 0.04 + 0.10 + 0.03 = 0.89$$
 clo

Method 4: It is acceptable to determine the clothing insulation (I_{cl}) with Figure 5.2.2.2 in mechanically conditioned buildings. When people select their clothing as a function of outdoor and indoor climate variables, the most influential variable is outdoor air temperature. Figure 5.2.2.2 can be used to calculate the clothing insulation for each day of the year or for representative days. The curve in Figure 5.2.2.2 is an approximation for typical (or average) clothing. The model is based on field study and may not be appropriate for all cultures and occupancy types. The model represented in Figure 5.2.2.2 is suited to be implemented in building performance simulation software or building control systems. The model graphed in Figure 5.2.2.2 is described by the following equations:

For
$$t_{a(out,6)} < -5^{\circ}$$
C $I_{cl} = 1.00$
For -5° C $\leq t_{a(out,6)} < 5^{\circ}$ C $I_{cl} = 0.818 - 0.0364 * t_{a(out,6)}$
For 5° C $\leq t_{a(out,6)} < 26^{\circ}$ C $I_{cl} = 10^{(-0.1635 - 0.0066 * ta(out,6))}$
or $t_{a(out,6)} \ge 26^{\circ}$ C $I_{cl} = 0.46$

For
$$t_{a(out,6)} < 23^{\circ}$$
F $I_{cl} = 1.00$
For 23° F $\leq t_{a(out,6)}$ $I_{cl} = 1.465 - 0.0202 \times t_{a(out,6)}$
For 41° F $\leq t_{a(out,6)}$ $I_{cl} = 10^{(-0.0460 - 0.00367 \times ta(out,6))}$
or $t_{a(out,6)} \ge 78.8^{\circ}$ F $I_{cl} = 0.46$

Tables 5.2.2.2A and 5.2.2.2B are for a standing person. A sitting posture results in a decreased thermal insulation due to compression of air layers in the clothing. This decrease can be offset by insulation provided by the chair. Table 5.2.2.2C shows the net effect on clothing insulation (I_{cl}) for typical indoor clothing ensembles that result from sitting in a chair. These data may be used to adjust clothing insulation calculated using any of the above methods. For example, the clothing insulation for a person wearing Ensemble 3 from Table 5.2.2.2A and sitting in an executive chair is 0.96 + 0.15 = 1.11 clo. For many chairs, the net effect of sitting is a minimal change in clothing insulation. For this reason, no adjustment to clothing insulation is needed if there is uncertainty as to the type of chair and/or if the activity for an individual includes both sitting and standing.

Tables 5.2.2.2A and 5.2.2.2B are for a person that is not moving. Body motion decreases the insulation of a clothing ensemble by pumping air through clothing openings and/or causing air motion within the clothing. This effect varies considerably depending on the nature of the motion (e.g., walking versus lifting) and the nature of the clothing (stretchable and snug fitting versus stiff and loose fitting). Because of this variability, accurate estimates of clothing insulation (I_{cl}) for an active person are not available unless measurements are made for the specific clothing under the conditions in question (e.g., with a walking manikin). An approximation of the clothing insulation for an active person is

$$I_{cl, active} = I_{cl} \times (0.6 + 0.4/M)$$

1.2 met < M < 2.0 met

where M is the metabolic rate in met units and I_{cl} is the insulation without activity. For metabolic rates less than or equal to 1.2 met, no adjustment for motion is required.

When a person is sleeping or resting in a reclining posture, the bed and bedding provide considerable thermal insulation. It is not possible to determine the thermal insulation for most sleeping or resting situations unless the individual is immobile. Individuals adjust bedding to suit individual preferences. Provided adequate bedding materials are available, the thermal environmental conditions desired for sleeping and resting vary considerably from person to person and cannot be determined by the methods included in this standard.

Clothing variability among occupants in a space is an important consideration in applying this standard. This variability takes two forms. In the first form, different individuals wear different clothing due to factors unrelated to the thermal conditions. Examples include different clothing style preferences for men and women and offices where managers are expected to wear suits while other staff members may work in shirtsleeves. In the second form, the variability results from adaptation to individual differences in response to the thermal environment. For example, some individuals wear sweaters while others wear short-sleeve shirts in the same environment if there are no constraints limiting what is worn. The first form of variability results in differences in the requirements for thermal comfort between the different occupants, and these differences should be addressed in applying this standard. In this situation, it is *not* correct to determine the average clothing insulation (I_{cl}) of various groups of occupants to determine the thermal environmental conditions needed for all occupants. Where the variability within a group of occupants is of the second form and is a result only of individuals freely making adjustments in clothing to suit their individual thermal preferences, it is correct to use a single representative average clothing insulation value for everyone in that group.

For near-sedentary activities where the metabolic rate is approximately 1.2 met, the effect of changing clothing insulation (I_{cl}) on the optimum operative temperature (t_o) is approximately 6°C (11°F) per clo.

Example: Table 5.2.2.2B indicates that adding a thin, longsleeve sweater to a clothing ensemble increases clothing insulation (I_{cl}) by approximately 0.25 clo. Adding this insulation would lower the optimum operative temperature (t_o) by approximately 6°C/clo × 0.25 clo = 1.5°C (11°F/clo × 0.25 clo = 2.8°F).

INFORMATIVE APPENDIX F ANALYTICAL AND GRAPHIC COMFORT ZONE METHODS

F1. DETERMINING ACCEPTABLE THERMAL CON-DITIONS IN OCCUPIED SPACES

This standard recommends a specific percentage of occupants that constitutes acceptability and values of the thermal environment associated with this percentage.

For given values of humidity, air speed, metabolic rate, and clothing insulation, a comfort zone may be determined. The comfort zone is defined in terms of a range of operative temperatures (t_o) that provide acceptable thermal environmental conditions or in terms of the combinations of air temperature and mean radiant temperature $(\bar{t_r})$ that people find thermally acceptable.

This standard contains a simplified Graphical Comfort Zone Method for determining the comfort zone that is acceptable for use for many typical applications. A computer program based on a heat balance model will determine the comfort zone for a wider range of applications. For a given set of conditions, the results from the two methods are consistent, and either method is acceptable for use as long as the criteria outlined in the respective section are met.

See Normative Appendix A and Chapter 9 of ASHRAE Handbook—Fundamentals³ for procedures to calculate operative temperature (t_o) . Dry-bulb temperature is a proxy for operative temperature under certain conditions described in Normative Appendix A.

F2. GRAPHICAL COMFORT ZONE METHOD

Use of this method is limited to representative occupants with metabolic rates between 1.0 and 1.3 met and clothing insulation between 0.5 and 1.0 clo in spaces with air speeds less than 0.2 m/s (40 fpm). Spaces with air distribution systems that are engineered such that HVAC-system-supplied air streams do not enter the occupied zone will seldom have averaged air speeds that exceed 0.2 m/s (40 fpm). See Chapter 21 of *ASHRAE Handbook—Fundamentals* for guidance on selecting air distribution systems.

Figure 5.3.1 shows the comfort zone for environments that meet the above criteria. Two zones are shown—one for 0.5 clo of clothing insulation and one for 1.0 clo of insulation. These insulation levels are typical of clothing worn when the outdoor environment is warm and cool, respectively.

Comfort zones for intermediate values of clothing insulation are determined by linear interpolation between the

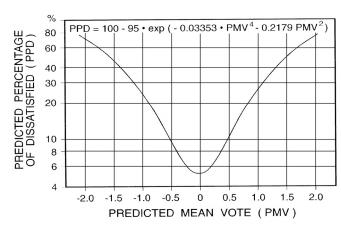


FIGURE F3 Predicted percentage dissatisfied (PPD) as a function of predicted mean vote (PMV).

TABLE F3 Acceptable Thermal Environment for General Comfort

PPD	PMV Range
<10	-0.5 < PMV < +0.5

limits for 0.5 and 1.0 clo, using the relationships shown in this standard.

Elevated air speeds increase the upper operative temperature (t_o) limit for the comfort zone if the criteria in the elevated air speed section are met.

F3. ANALYTICAL COMFORT ZONE METHOD

This method applies to spaces where the occupants have activity levels that result in average metabolic rates between 1.0 and 2.0 met and where clothing is worn that provides 1.5 clo or less of thermal insulation.

The ASHRAE thermal sensation scale, which was developed for use in quantifying people's thermal sensation, is defined as follows:

- +3 Hot
- +2 Warm
- +1 Slightly warm
- 0 Neutral
- -1 Slightly cool
- -2 Cool
- -3 Cold

The predicted mean vote (PMV) model uses heat balance principles to relate the six key factors for thermal comfort to the average response of people on the above scale. The predicted percentage dissatisfied (PPD) index is related to the PMV as defined in Figure F3. It is based on the assumption that people voting +2, +3, -2, or -3 on the thermal sensation scale are dissatisfied and on the simplification that PPD is symmetric around a neutral PMV.

Table F3 defines the recommended PPD and PMV range for typical applications. This is the basis for the Graphical Comfort Zone Method in the standard. The comfort zone is defined by the combinations of the six key factors for thermal comfort for which the PMV is within the recommended limits specified in Table F3. The PMV model is calculated with the air temperature and mean radiant temperature (\bar{t}_r) in question, along with the applicable metabolic rate, clothing insulation, air speed, and humidity. If the resulting PMV value generated by the model is within the recommended range, the conditions are within the comfort zone.

Use of the PMV model in this standard is limited to air speeds below 0.20 m/s (40 fpm). When air speeds exceed 0.20 m/s (40 fpm) the comfort zone boundaries are adjusted based on the SET model described in the elevated air speed section and in Informative Appendix G.

There are several computer codes available that predict PMV-PPD. The computer code in Normative Appendix B was developed for use with this standard and is incorporated into *ASHRAE Thermal Comfort Tool.*⁴ If any other software is

used, it is the user's responsibility to verify and document that the version used yields the same results as the code in Normative Appendix B or the *ASHRAE Thermal Comfort Tool* for the conditions for which it is applied.

F4. HUMIDITY LIMITS

When the Graphical Comfort Zone Method is used, systems must be able to maintain a humidity ratio at or below 0.012, which corresponds to a water vapor pressure of 1.910 kPa (0.277 psi) at standard pressure or a dew-point temperature of 16.8° C (62.2°F).

There are no established lower humidity limits for thermal comfort; consequently, this standard does not specify a minimum humidity level. Nonthermal comfort factors, such as skin drying, irritation of mucus membranes, dryness of the eyes, and static electricity generation, may place limits on the acceptability of very low humidity environments.

INFORMATIVE APPENDIX G PROCEDURE FOR EVALUATING COOLING EFFECT OF ELEVATED AIR SPEED USING SET

Section 5.3 specifies that the SET model be used to account for the cooling effect of air speeds greater than the maximum allowed in the Graphic Comfort Zone or Analytical Comfort Zone methods.

ASHRAE Handbook—Fundamentals³ defines SET as the equivalent air temperature of an isothermal environment at 50% rh in which a subject, wearing clothing standardized for the activity concerned, has the same heat stress (skin temperature) and thermoregulatory strain (skin wettedness) as in the actual environment.

SET is calculated by a thermophysiological simulation of the human body. The SET model reduces any combination of real environmental and personal variables into the temperature of the imaginary standard environment. The standard environment enables air speed effects on thermal comfort to be related across a wide range of air temperatures, radiant temperatures, and humidities.

For a given set of environmental and personal variables, including an elevated average air speed and an average air temperature (t_a) , the SET is first calculated. Then the average air speed (V_a) is replaced by still air (0.15 m/s [30 fpm]), and a second average air temperature is found that yields the same SET as in the first calculation. The second average air temperature is termed the "adjusted average air temperature." The difference in the two average air temperatures is the cooling effect of the average air speed (V_a) .

The PMV adjusted for an environment with elevated average air speed is calculated using the adjusted average air temperature and still air (0.15 m/s [30 fpm]).

This process can be performed manually using the *ASHRAE Thermal Comfort Tool* or similar software as follows:

- a. Enter the average air temperature (t_a) , radiant temperature, relative humidity, clo value, and met rate.
- b. Set your elevated average air speed in the range from above 0.15 to 3 m/s (30 to 590 fpm).
- c. Note the calculated value for SET in the output data.
- d. Reduce the average air speed (V_a) to 0.15 m/s (30 fpm).
- e. Reduce the average air temperature (t_a) in small increments until the SET is equal to the value noted in Step 3.
- f. This air temperature value is the adjusted average air temperature.
- g. The PMV adjusted for elevated average air speed is calculated using the following inputs:
 - 1. Adjusted average air temperature from Step 6
 - 2. Average air speed (V_a) of 0.15 m/s (30 fpm)
 - 3. Original relative humidity

- 4. Original mean radiant temperature (\bar{t}_r)
- 5. Original clo value
- 6. Original met rate.

The following is a formal description of this process that can be automated:

Suppose t_a is the average air temperature and v_{elev} is the elevated average air speed such that $v_{elev} > 0.15$ m/s (30 fpm). Let $v_{still} = 0.15$ m/s (30 fpm). Consider functions PMV and SET, which take six parameters, which we will denote with the shorthand PMV(.,*) and SET (.,*). The variables of importance will be listed explicitly, while the parameters that are invariant will be denoted with the "*" shorthand. The variables we will refer to explicitly are the average air temperature (t_a), mean radiant temperature ($\bar{t_r}$), average air speed (V_a), and relative humidity (RH).

To define the adjusted average air temperature t_{adj} , we assert that it satisfies the following:

$$SET(t_{ab}, v_{elev}, *) = SET(t_{adj}, v_{still}, *)$$
(G-1)

That is, the adjusted average air temperature yields the same SET given still air as the actual air temperature does at elevated average air speed. In order to determine t_{adj} , an iterative root-finding method such as the bisection or secant method may be employed. The root of the function f(t) satisfies the definition of t_{adj} :

$$f(t) = \operatorname{SET}(t_{db}, v_{elev}, *) - \operatorname{SET}(t, v_{still}, *)$$
(G-2)

The adjusted PMV is given by

$$PMV_{adj} = PMV(t_{adj}, v_{still}, *)$$
(G-3)

Example:

Input settings at elevated average air speed:

ta	$\overline{t_r}$	V _a	RH	Met	Clo				
28°C (82.4°F)	28°C (82.4°F)	1.0 m/s (196.9 fpm)	50	1.3	0.8				
	SET= 27.5°C (81.5°F)								

Input settings at reduced average air speed:

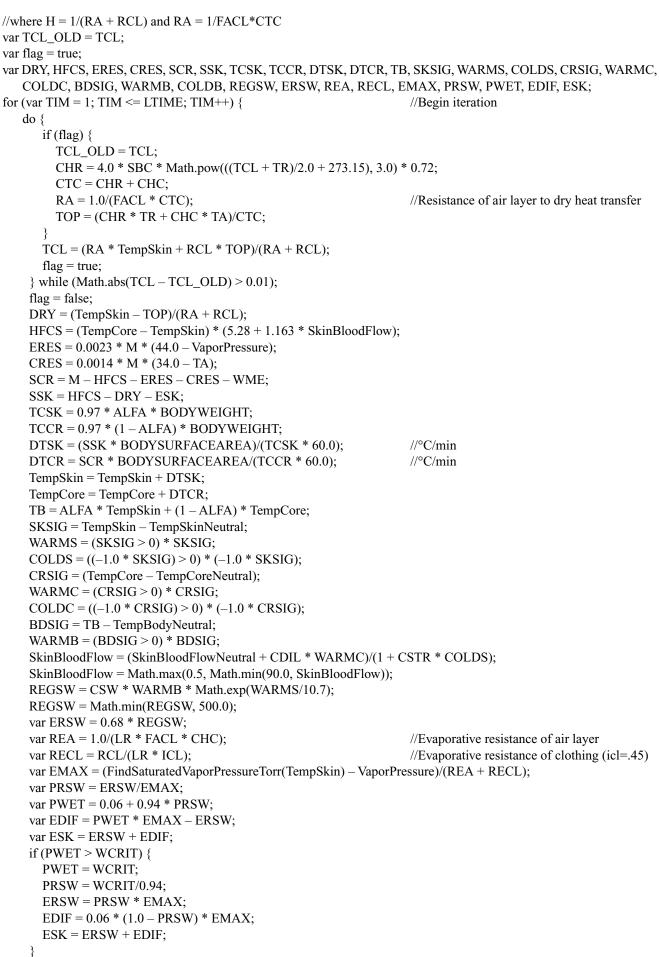
t _a	$\overline{t_r}$	V _a	RH	Met	Clo				
28°C (82.4°F)	28°C (82.4°F)	0.15 m/s (29.5 fpm)	50	1.3	0.8				
	SET= 29.9°C (85.8°F)								

Input settings after search for adjusted average air temperature:

t _a	$\overline{t_r}$	V _a	RH	Met	Clo			
22.5°C (74°F)	28°C (82.4°F)	0.15 m/s (29.5 fpm)	50	1.3	0.8			
	SET= 27.5°C (81.5°F)							

The adjusted average air temperature is 22.5° C (74°F). The PMV result for the final input settings is

PMV = 0.63


If the ASHRAE Thermal Comfort Tool is not available, it is possible to use the Graphical Method in Figure 5.3.3A, approximating the effect of clothing or activity changes as follows: The outer boundary curves in Figure 5.3.3A shift toward the left or right depending on clo and met level. An increase of 0.1 clo or 0.1 met corresponds approximately to a 0.8° C $(1.4^{\circ}$ F) or 0.5° C $(0.9^{\circ}$ F) reduction in operative temperature (t_o) ; a decrease of 0.1 clo or 0.1 met corresponds approximately to a 0.8° C $(1.4^{\circ}$ F) or 0.5° C $(0.9^{\circ}$ F) increase in operative temperature. Average air speed (V_a) as defined in this standard is averaged at three heights. The averaging may be weighted by the designer to account for the following: The *SET* thermophysiological model described in Section 5.3.3 and Informative Appendix G is based on the assumption that the body is exposed to a uniform air speed. However, spaces with passive or active systems that provide strongly nonuniform air velocity fields cause skin heat losses that cannot be simply related to those of uniform velocity fields. Therefore, the designer shall decide the proper averaging for air speed for use in the Graphical Method (Figure 5.3.3) and Informative Appendix G. The proper averaging shall include air speeds incident on unclothed body parts (e.g., head) that have greater cooling effect and potential for local discomfort than unclothed parts.

G1. COMPUTER PROGRAM FOR CALCULATION OF SET

For additional technical information and an I-P version of the equations in this appendix, refer to the *ASHRAE Thermal Comfort Tool.*⁴ The Thermal Comfort Tool allows for I-P inputs and outputs, but the algorithm is implemented in SI units. Documentation for the SET model is Fountain and Huizenga (1995). (See Informative Appendix L, "Bibliography and Informative References.")

Note: For the use of SET in ASHRAE Standard 55, the function for self-generated air speed as a function of met rate has been removed.

```
FindSaturatedVaporPressureTorr = function(T) {
    //Helper function for pierceSET calculates Saturated Vapor Pressure (Torr) at Temperature T (°C)
      return Math.exp(18.6686 - 4030.183/(T + 235.0));
}
pierceSET = function(TA, TR, VEL, RH, MET, CLO, WME, PATM) {
 //Input variables - TA (air temperature): °C, TR (mean radiant temperature): °C, VEL (air velocity): m/s,
 //RH (relative humidity): %, MET: met unit, CLO: clo unit, WME (external work): W/m<sup>2</sup>, PATM (atmospheric pressure): kPa
 var KCLO = 0.25:
 var BODYWEIGHT = 69.9;
                                                                            //kg
 var BODYSURFACEAREA = 1.8258;
                                                                            //m<sup>2</sup>
                                                                            //W/m<sup>2</sup>
 var METFACTOR = 58.2;
 var SBC = 0.00000056697:
                                                                            //Stefan-Boltzmann constant (W/m<sup>2</sup>K4)
 var CSW = 170.0;
 var CDIL = 120.0;
 var CSTR = 0.5;
 var LTIME = 60.0;
 var VaporPressure = RH * FindSaturatedVaporPressureTorr(TA)/100.0;
 var AirVelocity = Math.max(VEL, 0.1);
 var TempSkinNeutral = 33.7;
 var TempCoreNeutral = 36.49;
 var TempBodyNeutral = 36.49;
 var SkinBloodFlowNeutral = 6.3;
 var TempSkin = TempSkinNeutral;
                                                                            //Initial values
 var TempCore = TempCoreNeutral;
 var SkinBloodFlow = SkinBloodFlowNeutral;
 var MSHIV = 0.0:
 var ALFA = 0.1;
 var ESK = 0.1 * MET;
 var PressureInAtmospheres = PATM * 0.009869;
 var RCL = 0.155 * CLO;
 var FACL = 1.0 + 0.15 * CLO;
 var LR = 2.2/PressureInAtmospheres;
                                                                            //Lewis Relation is 2.2 at sea level
 var RM = MET * METFACTOR;
 var M = MET * METFACTOR;
 if (CLO \le 0) {
    var WCRIT = 0.38 * Math.pow(AirVelocity, -0.29);
    var ICL = 1.0;
 } else {
    var WCRIT = 0.59 * Math.pow(AirVelocity, -0.08);
    var ICL = 0.45:
 }
    var CHC = 3.0 * Math.pow(PressureInAtmospheres, 0.53);
    var CHCV = 8.600001 * Math.pow((AirVelocity * PressureInAtmospheres), 0.53);
    var CHC = Math.max(CHC, CHCV);
    var CHR = 4.7;
    var CTC = CHR + CHC;
    var RA = 1.0/(FACL * CTC);
                                                                            //Resistance of air layer to dry heat transfer
    var TOP = (CHR * TR + CHC * TA)/CTC;
    var TCL = TOP + (TempSkin – TOP)/(CTC * (RA + RCL));
    //TCL and CHR are solved iteratively using: H(Tsk – TOP) = CTC(TCL – TOP),
```



```
if (EMAX < 0) {
      EDIF = 0;
      ERSW = 0;
      PWET = WCRIT;
      PRSW = WCRIT;
      ESK = EMAX;
    ł
    ESK = ERSW + EDIF;
    MSHIV = 19.4 * COLDS * COLDC;
    M = RM + MSHIV;
    ALFA = 0.0417737 + 0.7451833/(SkinBloodFlow + 0.585417);
                                                                  //End iteration
  Ş
var HSK = DRY + ESK;
                                                                  //Total heat loss from skin
var RN = M - WME;
                                                                  //Net metabolic heat production
var ECOMF = 0.42 * (RN - (1 * METFACTOR));
if (ECOMF < 0.0) ECOMF = 0.0;
                                                                  //From Fanger
EMAX = EMAX * WCRIT;
var W = PWET;
var PSSK = FindSaturatedVaporPressureTorr(TempSkin);
                                                                  //Definition of ASHRAE standard environment
var CHRS = CHR;
                                                                  //... denoted "S"
if (MET < 0.85) {
var CHCS = 3.0;
} else {
    var CHCS = 5.66 * Math.pow(((MET - 0.85)), 0.39);
    CHCS = Math.max(CHCS, 3.0);
  }
var CTCS = CHCS + CHRS;
var RCLOS = 1.52/((MET - WME/METFACTOR) + 0.6944) - 0.1835;
var RCLS = 0.155 * RCLOS;
var FACLS = 1.0 + KCLO * RCLOS;
var FCLS = 1.0/(1.0 + 0.155 * FACLS * CTCS * RCLOS);
var IMS = 0.45;
var ICLS = IMS * CHCS/CTCS * (1 – FCLS)/(CHCS/CTCS – FCLS * IMS);
var RAS = 1.0/(FACLS * CTCS);
var REAS = 1.0/(LR * FACLS * CHCS);
var RECLS = RCLS/(LR * ICLS);
var HD_S = 1.0/(RAS + RCLS);
var HE_S = 1.0/(REAS + RECLS);
//SET determined using Newton's iterative solution
var DELTA = .0001;
var dx = 100.0;
var SET, ERR1, ERR2;
var SET OLD = TempSkin – HSK/HD S;
                                                                  //Lower bound for SET
while (Math.abs(dx) > .01) {
   ERR1 = (HSK - HD_S * (TempSkin - SET_OLD) - W * HE_S * (PSSK - 0.5 *
   FindSaturatedVaporPressureTorr(SET_OLD)));
   ERR2 = (HSK - HD_S * (TempSkin - (SET_OLD + DELTA)) - W * HE_S * (PSSK - 0.5 *
   FindSaturatedVaporPressureTorr((SET_OLD + DELTA))));
    SET = SET OLD - DELTA * ERR1/(ERR2 - ERR1);
    dx = SET - SET OLD;
    SET_OLD = SET;
  }
  return SET;
}
```

Tempo	erature	М	RT	Velo	ocity	RH			SET	
°C	°F	°C	°F	m/s	fpm	%	– Met	Clo	°C	°F
25	77	25	77	0.15	29.5	50	1	0.5	23.9	75.0
0	32	25	77	0.15	29.5	50	1	0.5	12.3	54.1
10	50	25	77	0.15	29.5	50	1	0.5	17	62.6
15	59	25	77	0.15	29.5	50	1	0.5	19.3	66.7
20	68	25	77	0.15	29.5	50	1	0.5	21.6	70.9
30	86	25	77	0.15	29.5	50	1	0.5	26.2	79.2
40	104	25	77	0.15	29.5	50	1	0.5	33.6	92.5
25	77	25	77	0.15	29.5	10	1	0.5	23.3	73.9
25	77	25	77	0.15	29.5	90	1	0.5	24.4	75.9
25	77	25	77	0.1	19.7	50	1	0.5	24	75.2
25	77	25	77	0.6	118.1	50	1	0.5	21.4	70.5
25	77	25	77	1.1	216.5	50	1	0.5	20.4	68.7
25	77	25	77	3	590.6	50	1	0.5	18.8	65.8
25	77	10	50	0.15	29.5	50	1	0.5	15.2	59.4
25	77	40	104	0.15	29.5	50	1	0.5	31.9	89.4
25	77	25	77	0.15	29.5	50	1	0.1	20.7	69.3
25	77	25	77	0.15	29.5	50	1	1	27.2	81.0
25	77	25	77	0.15	29.5	50	1	2	32.6	90.7
25	77	25	77	0.15	29.5	50	1	4	38	100.4
25	77	25	77	0.15	29.5	50	0.8	0.5	23.3	73.9
25	77	25	77	0.15	29.5	50	2	0.5	29.8	85.6
25	77	25	77	0.15	29.5	50	4	0.5	35.9	96.6

TABLE G1-1 Validation Table for SET Computer Model

INFORMATIVE APPENDIX H LOCAL DISCOMFORT AND VARIATIONS WITH TIME

H1. LOCAL THERMAL DISCOMFORT

Avoiding local thermal discomfort, whether caused by a vertical air temperature difference between the feet and the head, by an asymmetric radiant field, by local convective cooling (draft), or by contact with a hot or cold floor, is essential to providing acceptable thermal comfort.

The requirements specified in Section 5.3.4 of this standard apply directly to a lightly clothed person (with clothing insulation between 0.5 and 0.7 clo) engaged in near sedentary physical activity (with metabolic rates between 1.0 and 1.3 met). With higher metabolic rates and/or with more clothing insulation, people are less thermally sensitive and, consequently, the risk of local discomfort is lower. Thus, it is acceptable to use the requirements of Section 5.3.4 for metabolic rates greater than 1.3 met and with clothing insulation greater than 0.7 clo, since they will be conservative. People are more sensitive to local discomfort when the whole body is cooler than neutral and less sensitive to local discomfort when the whole body is warmer than neutral. The requirements of Section 5.3.4 of this standard are based on environmental temperatures near the center of the comfort zone. These requirements apply to the entire comfort zone, but they may be conservative for conditions near the upper temperature limits of the comfort zone and may underestimate discomfort at the lower temperature limits of the comfort zone.

Table H1 shows the expected percent dissatisfied for each source of local thermal discomfort described in Sections 5.3.4.1 through 5.3.4.4. The criteria for all sources of local thermal discomfort should be met simultaneously at the levels specified for an environment to meet the requirements of Section 5.3 of this standard. The expected percent dissatisfied for each source of local thermal discomfort described in Sections 5.3.4.1 through 5.3.4.4 should be specified.

H2. RADIANT TEMPERATURE ASYMMETRY

The thermal radiation field about the body may be nonuniform due to hot and cold surfaces and direct sunlight. This asymmetry may cause local discomfort and reduce the thermal acceptability of the space. In general, people are more sensitive to asymmetric radiation caused by a warm ceiling than that caused by hot and cold vertical surfaces. Figure H2 gives the expected percentage of occupants dissatisfied due to radiant temperature asymmetry caused by a warm ceiling, a cool wall, a cool ceiling, or a warm wall.

TABLE H1 Expected Percent Dissatisfied Due to Local Discomfort from Draft or Other Sources

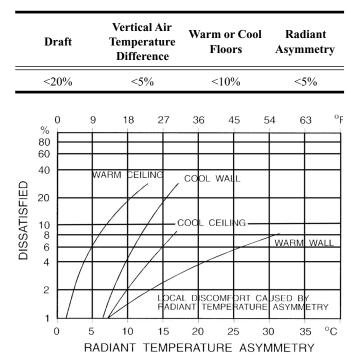
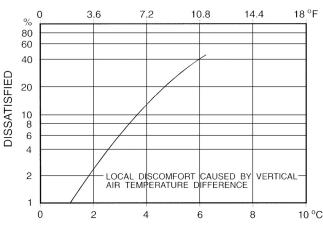


FIGURE H2 Local thermal discomfort caused by radiant asymmetry.

The allowable radiant asymmetry limits are based on Figure H2 and assume that a maximum of 5% of occupants are dissatisfied by radiant asymmetry.


H3. DRAFT

Draft is unwanted local cooling of the body caused by air movement. It is most prevalent when the whole body thermal sensation is cool (below neutral). Draft sensation depends on the air speed, the air temperature, the activity, and the clothing. Sensitivity to draft is greatest where the skin is not covered by clothing, especially the head region comprising the head, neck, and shoulders and the leg region comprising the ankles, feet, and legs.

Use of elevated air speed to extend the thermal comfort range is appropriate when occupants are slightly warm, as set forth in Section 5.3.3. When occupants are neutral to slightly cool, such as under certain combinations of met rate and clo value with operative temperatures (t_o) below 22.5°C (72.5°F), average air speeds within the comfort envelope of ±0.5 PMV should not exceed 0.15 m/s (30 fpm). This limit applies to air movement caused by the building, its fenestration, and its HVAC system and not to air movement produced by office equipment or occupants. This standard allows average air speed to exceed this limit if it is under the occupants' local control and it is within the elevated air speed comfort envelope described in Section 5.3.3.

H4. VERTICAL AIR TEMPERATURE DIFFERENCE

Thermal stratification that results in the air temperature at the head level being warmer than that at the ankle level may

AIR TEMPERATURE DIFFERENCE BETWEEN HEAD AND FEET

FIGURE H4 Local thermal discomfort caused by vertical temperature differences.

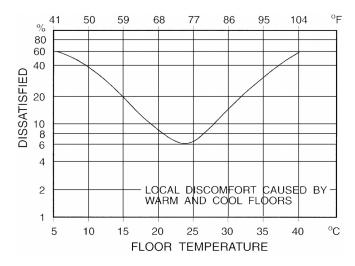


FIGURE H5 Local discomfort caused by warm and cool floors.

cause thermal discomfort. Section 5.3.4.3 of this standard specifies allowable differences between the air temperature at head level and the air temperature at ankle level. Figure H4 shows the expected percentage of occupants who are dissatis-fied due to the air temperature difference where the head level is warmer than the ankle level. Thermal stratification in the opposite direction is rare, is perceived more favorably by occupants, and is not addressed in this standard.

The allowable difference in air temperature from ankle level to head level is based on Figure H4 and assumes that a maximum of 5% of occupants are dissatisfied by the vertical air stratification.

H5. FLOOR SURFACE TEMPERATURE

Occupants may feel uncomfortable due to contact with floor surfaces that are too warm or too cool. The temperature of the floor, rather than the material of the floor covering, is the most important factor for foot thermal comfort while wearing shoes. Figure H5 gives the percentage of occupants expected to be dissatisfied due to floor temperature (t_f) based on people wearing lightweight indoor shoes. Thus, it is acceptable to use these criteria for people wearing heavier footgear since they will be conservative. This standard does not address the floor temperature required for people not wearing shoes, nor does it address acceptable floor temperatures for people sitting on the floor.

The limit for floor temperature (t_f) is based on Figure H5 and assumes that a maximum of 10% of occupants are dissatisfied by warm or cold floors.

H6. TEMPERATURE VARIATIONS WITH TIME

Fluctuations in the air temperature and/or mean radiant temperature (\bar{t}_r) may affect the thermal comfort of occupants. Those fluctuations under the direct control of the individual occupant do not have a negative impact on thermal comfort, and the requirements of this standard do not apply to these fluctuations. Fluctuations that occur due to factors not under the direct control of the individual occupant (e.g., cycling from thermostatic control) may have a negative effect on comfort, and the requirements of this standard apply to these fluctuations. Fluctuations that occupants experience as a result of moving between locations with different environmental conditions are allowed by Section 5 of this standard as long as the conditions at all of these locations are within the comfort zone for these moving occupants.

H7. CYCLIC VARIATIONS

Cyclic variations refer to those situations where the operative temperature (t_o) repeatedly rises and falls, and the period of these variations is not greater than 15 minutes. If the period of the fluctuation cycle exceeds 15 minutes, the variation is treated as a drift or ramp in operative temperature and the requirements of Section 5.3.5.2 apply. In some situations, variations with a period not greater than 15 minutes are superimposed on variations with a longer period. In these situations, the requirements of Section 5.3.5.1 apply to the component of the variation with a period not greater than 15 minutes, and the requirements of Section 5.3.5.2 apply to the component of the variation with a period greater than 15 minutes.

H8. DRIFTS OR RAMPS

Temperature drifts and ramps are monotonic, noncyclic changes in operative temperature (t_o). The requirements of Section 5.3.5.2 also apply to cyclic variations with a period greater than 15 minutes. Generally, drifts refer to passive temperature changes of the enclosed space, and ramps refer to actively controlled temperature changes.

Section 5.3.5.2 specifies the maximum change in operative temperature (t_o) allowed during a period of time. For any given time period, the most restrictive requirements from Table 5.3.5.2 apply. For example, the operative temperature may not change more than 2.2°C (4.0°F) during a 1.0 h period, and it also may not change more than 1.1°C (2.0°F) during any 0.25 h period within that 1.0 h period. If the user creates variations as a result of control or adjustments, higher values may be acceptable.

These local thermal comfort criteria were developed in order to keep the expected percent of occupants who are dissatisfied due to all of these local discomfort factors at or below 10%. The operative temperature (t_o) ranges required in the standard were developed in order to keep the predicted percent dissatisfied of occupants due to operative temperature only, without factoring in local thermal factors. When both local discomfort factors and operative temperature considerations are combined, the goal of this standard to standardize thermal conditions acceptable to a substantial majority of occupants (80%) is achieved. This is especially true if there is some overlap between those who are dissatisfied due to local factors and those who are dissatisfied due to operative temperature.

INFORMATIVE APPENDIX I OCCUPANT-CONTROLLED NATURALLY CONDITIONED SPACES

For the purposes of this standard, occupant-controlled naturally conditioned spaces (see Section 5.4) are those spaces where the thermal conditions of the space are regulated primarily by the occupants through opening and closing of openings in the envelope. Field experiments have shown that occupants' thermal responses in such spaces depend in part on the outdoor climate and may differ from thermal responses in buildings with centralized HVAC systems primarily because of the different thermal experiences, changes in clothing, availability of control, and shifts in occupant expectations. This optional method is intended for such spaces.

In order for this optional method to apply, the space in question must be equipped with operable openings to the outdoors and can be readily opened and adjusted by the occupants of the space.

It is permissible to use mechanical ventilation with unconditioned air, but the space must not have a mechanical cooling system installed. Opening and closing of windows must be the primary means of regulating the thermal conditions in the space. It is permissible for the space to be provided with a heating system, but this optional method does not apply when the heating system is in operation. It applies only to spaces where the occupants are engaged in near-sedentary physical activities, with metabolic rates ranging from 1.0 to 1.3 met. This optional method applies only to spaces where the occupants are free to adapt their clothing to the indoor and/or outdoor thermal conditions. The permitted range of acceptable clothing must be at least as broad as 0.5 to 1.0 clo. Table I-1 shows example clothing ensembles that achieve 0.5 clo or lower. For spaces that meet these criteria, it is acceptable to determine the allowable indoor operative temperatures (t_o) from Figure 5.4.2.1. This figure includes two sets of operative temperature limits—one for 80% acceptability and one for 90% acceptability. The 80% acceptability limits are for typical applications. It is acceptable to use the 90% acceptability limits when a higher standard of thermal comfort is desired. Figure 5.4.2.1 is based on an adaptive model of thermal comfort that is derived from a global database of 21,000 measurements taken primarily in office buildings.

The input variable in the adaptive model in Figure 5.4.2.1 is prevailing mean outdoor air temperature $\overline{t_{pma(out)}}$. This temperature is based on the arithmetic average of the mean daily outdoor temperatures over some period of days. It represents the broader external climatic environment to which building occupants have become physiologically, behaviorally, and psychologically adapted. At its simplest, $\overline{t_{pma(out)}}$ can be approximated by the climatically normal monthly mean air temperature from the most representative local meteorological station available. When being used in conjunction with dynamic thermal simulation software in which outdoor weather data is formatted as a TMY, the preferred expression for $\overline{t_{pma(out)}}$ is an exponentially weighted, running mean of a sequence of mean daily outdoor temperatures prior to the day in question. Days in the more remote past have less influence on the building occupants' comfort temperature than more recent days, and this can be reflected by attaching exponentially decaying weights to the sequence of mean daily outdoor temperatures. This can be written as follows:

$$\overline{t_{pma(out)}} = (1-\alpha)[t_{e(d-1)} + \alpha t_{e(d-2)} + a^2 t_{e(d-3)} + \alpha^3 t_{e(d-4)} + \dots$$
(I-1)

where α is a constant between 0 and 1 that controls the speed at which the running mean responds to changes in weather (outdoor temperature). Recommended values for α are between 0.9 and 0.6, corresponding to a slow- and fastresponse running mean respectively. Adaptive comfort theory suggests that a slow-response running mean ($\alpha = 0.9$) could be more appropriate for climates in which synoptic-scale (day-today) temperature dynamics are relatively minor, such as the humid tropics. But for mid-latitude climates where people are

Garment Description	I _{clu} (clo)	Garment Description	I _{clu} (clo)
Sample Woman's Ensemble		Sample Man's Ensemble	
Bra	0.01	Men's briefs	0.04
Panties	0.03	Shoes	0.02
Pantyhose/stockings	0.02	Calf-length socks	0.03
Shoes	0.02	Short-sleeve dress shirt	0.19
Short-sleeve dress shirt	0.19	Straight trousers (thin)	0.15
Skirt (knee length thin)	0.14	Net, metal or wooden sided arm chair	0.00
Net, metal or wooden sided arm chair	0.00	Total	0.43
Total	0.41		

TABLE I-1 Example Clothing Ensembles

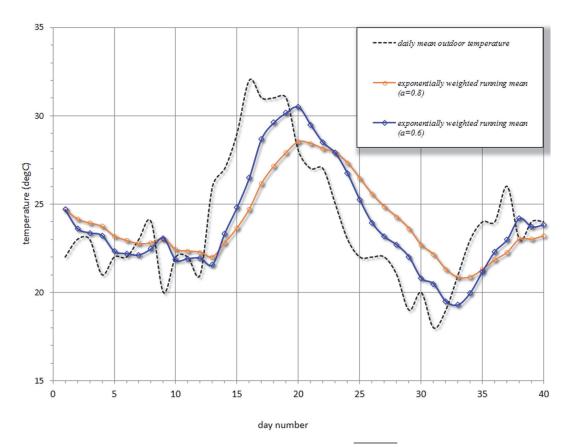


FIGURE I-1 Exponentially weighted running mean outdoor temperature $t_{pma(out)}$ with α set to 0.8 (slower responding) and 0.6 (faster responding).

more familiar with synoptic-scale weather variability, a lower value of α could be more appropriate. In Equation I-1, $t_{e(d-1)}$ represents the mean daily outdoor temperature for the previous day, $t_{e(d-2)}$ is the mean daily outdoor temperature for the day before that, and so on. The equation contains a sum to infinity, but is reducible to this more convenient form:

$$t_{pma(out)} = (1 - \alpha)t_{e(n-1)} + \alpha t_{rm(n-1)}$$
 (I-2)

where $t_{e(n-1)}$ is the mean daily outdoor temperature for the day before the day in question, and $t_{rm(n-1)}$ is the running mean temperature for the day before the day in question (n-1). For example, if $\alpha = 0.7$, the prevailing mean outdoor temperature for today would be 30% of yesterday's mean daily outdoor temperature plus 70% of yesterday's running mean outdoor temperature. This form of the equation advances the value of the running mean from one day to the next and is convenient both for computer algorithms and for manual calculations. A value for running mean temperature has to be assumed for day one in order to "seed" the sequence, but from then onwards it can be calculated with Equation I-2. The running mean may be initiated seven days prior to the start of the period of interest, and the actual daily mean outdoor temperature can be used for that first day to "seed" the sequence.

The allowable operative temperature (t_o) limits in Figure 5.4.2.1 may not be extrapolated to outdoor temperatures above and below the end points of the curves in this figure. If the prevailing mean outdoor temperature is less than 10°C

 (50°F) or greater than 33.5°C (92.3°F), this option may not be used, and no specific guidance for such conditions is included in this standard.

Figure 5.4.2 accounts for local thermal discomfort effects in typical buildings, so it is not necessary to address these factors when using this option. If there is reason to believe that local thermal comfort is a problem, it is acceptable to apply the criteria in Section 5.3.4.

Figure 5.4.2 also accounts for people's clothing adaptation in naturally conditioned spaces by relating the acceptable range of indoor temperatures to the outdoor climate, so it is not necessary to estimate the clothing values for the space. No humidity or air speed limits are required when this option is used.

Figure 5.4.2 includes the effects of people's indoor air speed adaptation in warm climates, up to 0.3 m/s (59 fpm) in operative temperatures (t_o) warmer than 25°C (77°F). In naturally conditioned spaces where air speeds within the occupied zone exceed 0.3 m/s (59 fpm), the upper acceptability temperature limits in Figure 5.4.2 are increased by the corresponding Δt_0 in Table 5.4.2.4, which is based on equal SET values as illustrated in Section 5.3.3. For example, increasing air speed within the occupied zone from 0.3 m/s (59 fpm) to 0.6 m/s (118 fpm) increases the upper acceptable temperature limits in Figure 5.4.2 by a Δt_0 of 1.2°C (2.2°F). These adjustments to the upper acceptability temperature limits apply only at $t_0 > 25°C$ (77°F) in which the occupants are engaged in near sedentary physical activity (with metabolic rates between 1.0 met and 1.3 met).

(This appendix is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

INFORMATIVE APPENDIX J SAMPLE DESIGN COMPLIANCE DOCUMENTATION

[Forms are located on the following pages.]

SAMPLE COMPLIANCE DOCUMENTATION TEMPLATE TO SUPPLMENT SECTION 6 OF THE STANDARD Based on Standard 55-2013

COMPLETE SECTION ONE FOR ALL PROJECTS

Assum	Assumptions for personal factors in each space type category & season						
		Clothing L	evel (CLO)				
	Space Type (i.e Office, Lobby, Gym)	Summer	Winter	Metabolic Rate (MET)			

	Weather data used for des Weather design conditions Cooling Hours per typical year that	used for pe	eak load cald	Heating]	
	Cooling	Temperatu	Dperative ure (degF)*	Humid	m Design ity (RH)		Air Speed
ode	Space Type (i.e Office, Lobby, Gym)	Summer	Winter	Summer	Winter	Summer	Winter
Cooling Mode							
Heating Mode							

Verify that the combinations of assumed personal factors, operative temperature, air speed, and humidity above results in Predicted Mean Votes (PMV) of less plus or minus 0.5. (Include supporting documentation with PMV/PPD calculation, A SHRAE comfort tool results, and/or psychrometric comfort zone chart from Standard 55). Predicted Mean Vote calculations shall use SET model adjustment for air speeds greater than 40 fpm.

Eleva	ted	Air	Spee	ed
-------	-----	-----	------	----

When average air speed at design conditions exceed 40 ft/min.

Verify that average air speeds are within specified limits of figure 5.3.3 when occupants do not have local control over air speed.

_

Verify that average air speeds are within specified limits of figure 5.3.3 when occupants have local control and that there are separate controls for every 84 sq. meters (900 sq.t.)

Local Discomfort Effects

Verify that local discomfort effects have been considered and are not likely to exceed Standard 55 limits. When local discomfort effects are likely to occur, verify that calculations were performed to demonstrate that local discomfort effects are predicted be within Standard 55 Section 5.3.4 limits.

Local Discomfort Effect

Radiant Temperature Asymmetry

Vertical Air Temperature Difference

Floor Surface Temperature

all

Not		Calculations
Likely		Performed
	8	
	22	

COMPLETE SECTION THREE FOR OCCUPANT-CONTROLLED NATURALLY CONDITIONED SPACES

Verify that each occupant-controlled naturally conditioned space meets all the criteria of Section 5.4 of Standard 55.

- a) The spaces have operable windows open to the outdoors readily adjustable by occupants.
 b) There is no mechanical cooling system (e.g., refrigerated air conditioning, radiant cooling, or desiccant cooling) installed. No heating system is in operation.
- c) Occupants are engaged in near-sedentary physical activities, with metabolic rates ranging from 1.0 to 1.3 met.
- d) Occupants are free to adapt their clothing to the indoor and/or outdoor thermal conditions within a range at least as wide as 0.5-1.0 clo.

e) The prevailing mean outdoor temperature is greater than 10°C (50°F) and less than 33.5°C (92.3°F).

Weather data used for mean monthly outdoor temperature calculations

Verify that the prevailing mean outdoor temperature is within the limits of Figure 5.4 for all months when occupant-controlled natural conditioning is in effect.

Increased air speed adjustment to upper operative temperature limit.

Verify that operative temperature is predicted to be within the 80% acceptability limits on Figure 5.4 from ASHRAE 55 included adjustment for elevated air speed. (Provide supporting documentation with inputs and results of calculations or simulations. Include worst case design outdoor conditions and worst case predicted indoor conditions for each month. Show predicted worst case indoor conditions for each month on Figure 5.4 of ASHRAE 55.)

Copyrighted material licensed to Fouad AbouRjeily on 2015-01-16 for licensee's use only. All rights reserved. No further reproduction or distribution is permitted. Distributed for ASHRAE by Thomson Reuters (Scientific) LLC, www.techstreet.com

SECTION THREE

(This appendix is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

INFORMATIVE APPENDIX K MEASUREMENTS, SURVEYS, AND EVALUATION OF COMFORT IN EXISTING SPACES: PARTS 1 AND 2

K1. PHYSICAL MEASUREMENTS

K1.1 Overview of Comfort Prediction Using Physical Measurements. Measurements of indoor environmental parameters are converted to predictions of occupants' thermal satisfaction through calculations and tests against comfort limits.

a. In the predicted-mean-vote-based (PMV) method (Section 5.3.2), environmental measurements are combined with assumptions about clothing and activity level to calculate PMV, a measure of an average occupant's thermal sensation. In Standard 55, *comfort zone* is defined as conditions falling within and including PMV levels from -0.5 PMV to +0.5 PMV.

At any given PMV level, a population's proportion of dissatisfied members may be predicted via the predicted percentage dissatisfied (PPD) curve. This is an empirical profit fit of thermal sensation (TSENS) survey scores obtained in a range of test environments in which dissatisfaction was assumed to occur at TSENS absolute values of 2 or greater. With this method, a PMV of ± 0.5 predicts 90% of a population satisfied, or a 10% PPD.

However, in most buildings this 90% satisfied rating is rarely obtained, with maximum satisfaction around 80%. The difference has been ascribed to discomfort perceived in local parts of the body. The probability of local discomfort is predicted by testing environmental parameters measured in sensitive locations against empiricallydetermined limits. Rates of temperature change are also limited to avoid discomfort. Local discomfort effects are assumed to contribute an additional 10% PPD to the discomfort predicted by PMV, so that the total PPD expected in a building with PMV ±0.5 will be 20%.

b. In the adaptive method, used for naturally ventilated spaces, environmental measurements are linked to satisfaction through an empirical model in which the prevailing mean air outdoor temperature determines the position of percent satisfied contours bordering the comfort zone. Section 5.4 defines prevailing mean outdoor air temperature. Local discomfort limits are not used in the adaptive method.

K1.2 Environmental and Occupant Measurements. Environmental parameters are described in Section 5.1, and their measurement requirements are described in Section 7.3. For nonsteady conditions, the Section 7.3.3 prescribes measurement timing.

The two personal parameters, activity level and clothing, must also be estimated for the occupants of the space. Estimation methods are presented in Normative Appendices D and E. For evaluating a space, each of these parameters shall be estimated in the form of mean values over a period of 0.25 to 1.0 hours immediately prior to measuring the indoor environmental parameters.

If the occupants are not yet present, such as during design and commissioning, one may use clothing and activity values agreed upon by owners and designers as appropriate for the building's function.

K2. SURVEYING OCCUPANTS

The use of occupant thermal environment surveys is an acceptable way of assessing comfort conditions for the acceptability ranges discussed in this standard. With surveys, one may measure the percent who are "satisfied," "acceptable," or "comfortable" by putting those direct questions to a representative sample of the occupants. One may also obtain the percent satisfied using the ASHRAE Thermal Sensation scale, making the traditional assumption that satisfaction occurs when the seven-point scale is within TSENS = $-1.5 \le$ satisfied $\le +1.5$ (when using a scale unit resolution of 0.5 or less), or $-2 \le$ satisfied $\le +2$ (when the scale resolution is limited to integers).

Surveys obtain occupants' comfort perceptions directly, whereas measurements of the environment predict those perceptions indirectly through models. However, surveys cannot be done in all cases. Because they require engaging the occupants and taking some of their time, it is necessary to have a well-planned communications approach and to use a survey that has been optimized for length and content. The timing and frequency of repetition must also be weighed.

All surveys should strive for a representative sample size and a high response rate across the occupied space in the building. If the objective of the survey is to assess an entire building or installation, an adequate sample size and response rate help lower the risks of generalizing a limited observation to the entire occupant population. Section 7.3.1 prescribes minimum response rates for surveys. It is possible that in operating buildings, the perceptions of nonrespondents may be less important than those of respondents who take the time to answer the questions.

Thermal environment surveys are invaluable tools for diagnostic purposes in existing buildings and facilities. As a diagnostic tool, the goal is not a broad-brush assessment of environmental quality, but rather a detailed insight into the building's day-to-day operation through occupant feedback. For such purposes, each response is valuable regardless of the size or response rate of the survey.

There are two types of thermal environment surveys. In either type of survey, the essential questions relate to thermal comfort, but additional questions can help identify problems and formulate possible responses.

K2.1 Right-now or point-in-time surveys are used to evaluate thermal sensations of occupants at a single point in time. Thermal comfort researchers have used these point-in-time surveys to correlate thermal comfort with environmental fac-

tors, such as those included in the PMV model: metabolic rate, clothing insulation, air temperature, radiant temperature, air speed, and humidity.

A sample point-in-time survey is included in Figure K-1. This is a thermal sensation survey that asks occupants to rate their sensation (from "hot" to "cold") on the ASHRAE sevenpoint thermal sensation scale. The scale units are sometimes designated "TSENS."

One may, however, ask the direct question "Is the environment thermally acceptable?" with a scale of "very unacceptable" to "very acceptable." The scale is best divided into seven scale units or more.

Sometimes preference scales for temperature and air movement are also used (e.g., these scales are common in the comfort field study database found in ASHRAE RP-884, *Towards an Adaptive Model of Thermal Comfort and Preference* [ASHRAE 1998]):

"Prefer to be:" "cooler/no change/warmer" "Prefer": "less air movement/no change/more air movement"

In order to use the results of a point-in-time survey to assess comfort acceptability ranges over time, the survey would have to be implemented under multiple thermal conditions and in multiple building operating modes. The difficulty of arranging multiple surveys in workplace environments usually limits the feasibility of using the point-in-time survey approach for assessing comfort over time. This limitation may diminish with the advent of Web-based applications oriented toward building operation.

K2.2 A second form of thermal environment survey—a satisfaction survey—is used to evaluate thermal comfort response of the building occupants in a certain span of time. Instead of evaluating thermal sensations and environmental variables

indirectly to assess percentage dissatisfied, this type of survey directly asks occupants to provide satisfaction responses.

An example thermal satisfaction survey is included in Figure K-2. It asks occupants to rate their satisfaction with their thermal environment (from "very satisfied" to "very dissatisfied") on a seven-point satisfaction scale. Acceptability is determined in two ways: by the percentage of occupants who have responded "neutral" through "very satisfied" (0, +1, +2, or +3) with their environment or by taking a slightly broader view of acceptability, including the percentage who have responded (-1, 0, +1, +2, +3).

The basic premise of the satisfaction survey is that occupants by nature can recall instances or periods of thermal discomfort, identify patterns in building operation, and provide "overall" or "average" comfort votes on their environment. The surveyor may identify a span of time for the respondents to consider. The occupants provide the time integration.

Questions to identify the nature (causes) of dissatisfaction may be included in satisfaction surveys (questions 7a through 7e in Figure K-2).

Since the survey results encompass a larger time frame, the survey can be made every six months or repeated in heating and/or cooling seasons. In a new building, the first thermal satisfaction survey may be done approximately six months after occupancy, late enough to avoid assessing the effects of putting the building into commission but early enough to help identify and solve long-term building problems that have escaped detection in the commissioning process.

The thermal satisfaction survey can be used by researchers, building operators, and facility managers to provide acceptability assessments of building systems' performance and operations in new buildings, in addition to periodic postoccupancy evaluation in existing facilities.

1.	Record the approximate outside-air temperature and seasonal conditions:		Yes No			
2. (No	Winter Spring Summer Fall What is your general thermal sensation? (Check the one that is most appropriate) Date to survey designer: This scale must be used as-is to keep	_	Are you near a w Yes No	ind	ow (within 15 ft)?	
the survey consistent with ASHRAE Standard 55.)		7.			please check each right now. (Check	
	Warm Slightly Warm		te to survey desig cretion.)	mer:	This list can be	modified at your
_	Neutral Slightly Cool		Short-Sleeve Shirt		Dress	Nylons
_	Cool Cold		Long-Sleeve Shirt		Shorts	Socks
3.	Either (a) place an "X" in the appropriate place where you are located now:		T-shirt Long-Sleeve		Athletic Sweatpants Trousers	Boots
	SAMPLE (Note to survey designer: Provide appropriate sketch for your space or building.)		Sweatshirt Sweater Vest		Undershirt Long Underwear Bottoms	Sandals
			Jacket		Long Sleeve Coveralls	
	b) place an "X" in the check box that best describes the a of the building where you are located now. North East South West Core		described above,	ote , or i	Overalls Slip if you are wearir f you think someth vy.)	ning you are wear-
	Don't know	8.	What is your act that is most appr			? (Check the one
	On which floor of the building are you located now? 1st 2nd 3rd Other (provide the floor number): Are you near an exterior wall (within 15 ft)?		Reclining Seated Standing relaxed Light activity stan Medium activity s High activity			

FIGURE K-1 Thermal environment point-in-time survey.

1. Either (a) place an "X" in the appropriate place where you spend most of your time:

2	SAMPLE	

(Note to survey designer: Provide appropriate sketch for your space or building.)

or (b) place an "X" in the check box that best describes the area of the building where your space is located.

 North East South West Core 	7.	If you are dissat space, which of th isfaction: a. In warm/h space is (ch
 Don't know On which floor of the building is your space located? 1st 2nd 3rd Other (provide the floor number) 		(<i>Note to su shown be lo</i> shown be lo Always too Often too ho Occasionally Occasionally
 3. Are you near an exterior wall (within 15 ft)? Yes No 4. Are you near a window (within 15 ft)? 		 b. In cool/col space is (chi
 Yes No 5. Which of the following do you personally adjust or control in your space? (Check all that apply.) 		(Note to su shown belo Always too
 (Note to survey designer: This list can be modified at your discretion.) Window blinds or shades Room air-conditioning unit Portable heater 		Occasionally Occasionally Occasionally Often too co Always too
 Portable heater Permanent heater Door to interior space Door to exterior space Adjustable air vent in wall or ceiling Ceiling fan Adjustable floor air vent (diffuser) Portable fan Therm ostat Operable window None of these Other: 		 c. When is the that apply) Morning (be) Midday (11) Afternoon (2) Evening (aft) Weekends/h Monday mo No particula Always Other:

Please respond to the following questions based on your overall or average experience in the past [six] months.

(Note to survey designer: The above statement can be modified for a different span of time.)

6. How satisfied are you with the temperature in your space? (Check the one that is most appropriate)

- isfied with the temperature in your e following contribute to your dissat
 - ot weather, the temperature in my neck the most appropriate box):

rvey designer: Include a scale or, as w, check boxes.)

- hot
- ot
- v too hot
- y too cold
- old
- cold
- d weather, the temperature in my neck the most appropriate box):

urvey designer: Include a scale or, as w, check boxes.)

- hot
- ot
- y too hot
- y too cold
- old
- cold
- nis most often a problem? (check all
- efore 11am)
- am-2pm)
- 2pm-5pm)
- ter 5pm)
- olidays
- rnings
- ar time

FIGURE K-2 Thermal environment satisfaction survey (continued on next page).

(Note to survey designer: This list can be modified at your discretion.)

liscretion.)	e.	Please describe any other issues related to being
Hum idity too high (damp)		too hot or too cold in your space:
Humidity too low(dry)		
Air movem ent too high		
Air movement too low		
Incoming sun		
Heat from office equipment		
Drafts from windows		
Drafts from vents		
My area is hotter/colder than other areas		
Thermostat is inaccessible		
Thermostat is adjusted by other people		
Clothing policy is not flexible		
Heating/cooling system does not respond quickly		
enough to the thermostat		
Hot/cold surrounding surfaces (floor, ceiling, walls,		
or windows)		

Note: This survey has been adapted from the CBE occupant IEQ survey developed by the Center for the Built Environment at the University of California at Berkeley.

FIGURE K-2 (Continued) Thermal environment satisfaction survey.

K3. EVALUATION OF COMFORT IN EXISTING SPACES

The evaluation approach depends on the intended application. The list of possible evaluation applications is extensive. They require evaluation over varying time periods, from short-term (ST) to long-term (LT):

- a. Real-time operation of a building using comfort metrics (ST)
- b. Evaluating HVAC system performance (ST, LT)
- c. Building management decisions regarding upgrades, continuous commissioning, and rating the performance of operators and service providers (LT)
- d. Real-estate portfolio management: rating building quality and value (LT, ST)
- e. Validating compliance with LEED existing-buildings requirements (ST, LT)
- f. Validating compliance with requirements of codesenergy, hospital, etc. (ST)

There are two main approaches to evaluating thermal comfort in operating buildings. One is to directly determine occupant thermal sensations and satisfaction through the statistical evaluation of occupant surveys. The other is to use comfort models to estimate sensations and satisfaction of the occupancy from measured environmental variables. The measurements needed for each of these approaches are described in Sections K1 and K2.

Surveys and physical measurements may be used in combination with each other for the purpose of problem diagnosis and research (see Table K3). In the short-term, right-now or point-in-time surveys are used to obtain comfort perceptions coincident with short-interval logged environmental measurements or BAS system trend data. For evaluating building performance over time, occupant satisfaction surveys results are correlated with averages of long-term measurements of environmental conditions.

K3.1Analysis Based on Occupant Surveys. Surveys can assess comfort directly, in contrast to the indirect approach of calculating comfort through comfort models using measured environmental variables.

a. Short-Term Analyses (Using Instantaneous Comfort Determinations)

1. Measures from Right-Now or Point-in-Time Surveys

- i. Thermal acceptability votes
- ii. Thermal sensation (TSENS) votes. When averaged for a population, TSENS votes correspond directly to PMV votes.
- iii. Temperature preference votes and air-movement preference votes ("less"/"no change"/"more")

2. Criteria for Passing

- i. -0.5 to +0.5 on the PMV scale, inclusive, is the criterion for passing in Standard 55.
- ii. Field surveys usually consider TSENS values of -1 and +1 as representing "satisfied;" the break along the categorical seven-point thermal sensation scale is at -1.5 and +1.5, inclusive.

3. Local Thermal Discomfort Determination

- i. Questions about any local thermal discomfort (e.g., ankle, neck discomfort).
- ii. Questions addressing solar radiation effects on comfort.

	Nature of Application				
		Short-Term	Long-Term		
Measurement Method	Occupant SurveysRight-Now/Point-in-Time Survey (must survey relevant times and population):• Binning (TSENS scores) leads to % comfort exceedance during period of survey.• Needs coincident temperature to extrapolate to full range of conditions. (Used for research, problem diagnostics)		 Occupant Satisfaction Survey: Survey scores give % dissatisfied directly. ("dissatisfaction" may be interpreted to start either below –1, or below 0). Time period of interest can be specified to survey takers. (Used for building management, commissioning, rating operators and real estate value, compliance with green building rating systems). 		
	Environmental Measurements	 Spot Measurements, Temporary (Mobile) Sensors (must select a relevant time to measure): Use measurements to determine PMV (Sections 5.3.1, 5.3.3). Use measurements to determine compliance with adaptive model (Section 5.4). (Used for real-time operation, testing and validating system performance). 	 Logging Sensors over Period of Interest, or Trend Data from Permanently Installed (BAS) Sensors: Exceedance hours: sum of hours over PMV or Adaptive Model limits. Binned exceedances may be weighted by their severity. Instances of excessive rate-of-temperature change or of local thermal discomfort can be counted. (Used for evaluating system and operator performance over time). 		

b. Long-Term Analyses (Representing Time Periods Such as Season or Year). In an Occupant Satisfaction Survey, thermal environment questions apply over time (three to six months or more). The survey includes diagnostic questions to identify sources of dissatisfaction. Point-in-time surveys may be repeated over time to obtain a long-term record of comfort. Because occupants have other responsibilities and limited time, repeated surveys must be very short and quickly completed.

1. Measures from Occupant Satisfaction Surveys

i. Thermal satisfaction scale ("very satisfied" to "very dissatisfied").

2. Criteria for Passing

- i. From neutral (0 scale unit) to +3. (Votes below this range generally comprise 40% of a building's total votes in the CBE survey benchmark database [ASHRAE 2013]).
- ii. Scale units –1 to +3. (Votes below this range generally comprise 20% of a building's total votes in the CBE survey benchmark database).

3. Branching Dissatisfaction Questions (Count Responses and Tally by Category)

i. Used to identify and correct problems. Analysis involves documenting the improvements made, resurveying the areas in which the problem occurred., and tallying the differences in responses obtained before and after the improvements.

4. Accumulated Scores from

Repeated Point-in-Time Surveys

i. If point-in-time surveys can be repeated sufficiently, the distribution of accumulated votes can be used to evaluate long-term comfort in the building. Such repetition becomes feasible with short computer applications available to occupants via desktop and mobile devices.

K3.2 Analysis Based on Measurements of

Environmental Variables. Environmental measurements are linked to occupant comfort through comfort models. There are two comfort models (PMV and adaptive) specific to different types of buildings (mechanically conditioned versus naturally ventilated, respectively). Since there are also buildings that contain a mix of the two types over time and space within the building (termed "mixed-mode" buildings), there is active investigation underway into how the two models apply to these types of buildings.

The following measures and criteria underlie the documentation of comfort performance based on physical environmental measurements.

K3.2.1 Point-in-Time (Short-Term) Analyses

a. PMV Model

- 1. **Measures:** PMV heat balance model prediction of thermal sensation and satisfaction from environmental measurements are described in Section 5.3 (including air movement extension in Section 5.3.3). Limits to local thermal discomfort are described in Section 5.3.4 and rates of temperature change are described in Section 5.3.5.
- 2. **Criteria for Passing:** -0.5 to +0.5 on the PMV scale, inclusive. This represents an estimated 90% satisfied with the thermal environment. Expressed as a comfort zone on a psychrometric chart, this represents a temperature range of 3K to 5K (5°F to 8°F), depending on clothing level and humidity (Figure 5.2.1.1).
- b. Local Thermal Discomfort Limits. Local thermal should, by itself, not exceed the limits prescribed in Section 5.3.4. At a minimum, an assumed 10% dissatisfaction caused by local discomfort is added to PMV-predicted discomfort to obtain the overall thermal dissatisfaction of an environment.

Solar radiation on occupants in neutral or warm conditions should not exceed 10% of outdoor solar radi-

ation incident on the window. The best-practice upper limit is 5% (ASHRAE 2013).

c. Adaptive Model (Section 5.3). The adaptive model is an empirical model of adaptive human responses to environments offering operable window control. The comfort zone on a given day is dependent on a running mean of previous outdoor air temperatures, to which people continuously adapt over time.

1. Measures

- i. Air temperature indoors
- ii. Running mean of outside air temperature, defined in Section 3 as the prevailing mean outdoor air temperature $(\overline{t_{pma(out)}})$
- 2. Criteria for Passing: A environmental condition passes if it is within the 80% boundaries predicted by the adaptive model.

d. Limits to Rate of Environmental Change

- 1. Measures
 - i. Operative temperature (t_o) rate of change
 - ii. Instances of rate-of-change exceedance within a defined time period

K3.2.2 Time-Integrated Analyses, (Long-Term over Typical Day, Season, or Year)

a. Measures

- 1. Trend logging of physical measurements over time.
- 2. Temperature and humidity in the occupied zone. Globe temperature (temperature measured within a globe exposed to radiation exchange with surrounding surfaces) closely approximates operative temperature (t_o) in most indoor situations. For greater accuracy, globe temperature measurements may be combined with shielded air temperature measurements to calculate MRT, which when averaged with the shielded air temperature.
- 3. Measuring indoor air movement over time is very difficult and rarely done. In many indoor situations the indoor airspeed conforms to the still air conditions of the PMV comfort zone (0.2 m/s [40 fpm]), in which case, air speed measurement is not necessary.
- 4. The number of hours in which local discomfort may be expected is estimated using the local thermal discomfort limits in Section 5. Local discomfort exceedance hours are added to hours in which the comfort

zone requirements are exceeded (exceedance occurs when |PMV| > 0.5).

b. Criteria Metrics

- 1. The prescribed metric is the exceedance hour (semantically equivalent to discomfort hour), predicted during occupied hours within any time interval. See definition in Section 3 and formulas in Section 7.4.2.2.1. Units are in hours. No limits are prescribed.
- 2. In addition, it is possible to account for the severity of exceedance at any time, using a metric analogous to the familiar degree-day. Weighted exceedance hours (equivalent to degree-of-discomfort hours) are the number of occupied hours within a defined time period in which the environmental conditions in an occupied zone are outside the comfort zone boundary, weighted by the extent of exceedance beyond the boundary. Units are thermal sensation scale units × hours. The formula for the PMV comfort zone uses terms defined in Section 7.4.2.2.1:

WEH =
$$\Sigma (H_{disc} (|PMV| - 0.5))$$

Units are thermal sensation scale units \times hours. This is a useful metric but is not required in Standard 55. No limits are recommended.

3. Temperature-weighted exceedance hours. It may be useful to convert PMV comfort zone WEHs to a temperature × hours scale, using the conversion 0.3 (thermal sensation scale units)/°C (0.15 [thermal sensation scale units]/°F). The unit for temperature-weighted exceedance hours is temperature × hours.).

This is a useful metric but is not required in Standard 55. No limits are recommended.

4. The WEH for the adaptive model also uses a temperature × hours scale:

WEH =
$$\Sigma (H_{> upper} (T_{op} - T_{upper}) + H_{< lower} (T_{lower} - T_{op}))$$

This is a useful metric but is not required in Standard 55. No limits are recommended.

5. Expected number of episodes of discomfort, rate-ofchange exceedances, local discomfort exceedances within a time period of interest.

These are useful metrics but not required in Standard 55. No limits are recommended. (This appendix is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

INFORMATIVE APPENDIX L BIBLIOGRAPHY AND INFORMATIVE REFERENCES

- Arens, E., T. Xu, K. Miura, H. Zhang, M. Fountain, and F. Bauman. 1998. A study of occupant cooling by personally controlled air movement. *Energy and Buildings* 27:45–59.
- ASHRAE. 1998. Towards an Adaptive Model of Thermal Comfort and Preference. ASHRAE RP-884.
- ASHRAE. 2006. ANSI/ASHRAE Standard 70-2006, *Method* of Testing for Rating the Performance of Air Outlets and Inlets. Atlanta: ASHRAE.
- ASHRAE. 2009a. ANSI/ASHRAE Standard 113-2009, Method of Testing for Room Air Diffusion. Atlanta: ASHRAE.
- ASHRAE. 2009b. *ASHRAE Handbook—Fundamentals*. Atlanta: ASHRAE.
- ASHRAE. 2013. Performance Measurement Protocols for Commercial Buildings: Best Practices Guide. ASHRAE, Atlanta.
- Berglund, L.G. 1979. Thermal acceptability. *ASHRAE Transactions* 85(2):825–34.
- Berglund, L.G., and A.P. Gagge. 1979. Thermal comfort and radiant heat. *Proceedings of the 3rd National Passive Solar Conference of The American Section of The International Solar Energy Society, Inc.*
- Berglund, L.G., and A.P.R. Fobelets. 1987. Subjective human response to low-level air currents and asymmetric radiation. *ASHRAE Transactions* 93(1):497–523.
- Berglund, L.G., and R.R. Gonzalez. 1978a. Application of acceptable temperature drifts to built environments as a mode of energy conservation. *ASHRAE Transactions* 84(1):110–21.
- Berglund, L.G., and R.R. Gonzalez. 1978b. Occupant acceptability of eight-hour-long temperature ramps in the summer at low and high humidities. *ASHRAE Transactions* 84(2):278–84.
- Bligh, J., and K.G. Johnson. 1973. Glossary of terms for thermal physiology. J. Appl. Physiol. 35941–61.
- Breunis, K., and J.P. deGroot. 1987. Relative humidity of the air and ocular discomfort in a group of susceptible office workers. *Proceedings of the Fourth International Conference on Indoor Air Quality and Climate* 2:625–29.
- de Dear, R.J., and G.S. Brager. 1998. Developing an adaptive model of thermal comfort and preference. *ASHRAE Transactions* 104(1a):145–67.
- de Dear, R.J., and M.E. Fountain. 1994. Field experiments on occupant comfort and office thermal environments in a hot-humid climate. *ASHRAE Transactions* 100(2):457–75.

- Donnini, G., J. Molina, C. Martello, D.H.C. Lai, L.H. Kit, C.Y. Chang, M. Laflamme, V.H. Nguyen, and F. Haghighat. 1996. Field study of occupant comfort and office thermal environment in a cold climate. Final Report of RP-821. ASHRAE, Atlanta.
- Fang, L., G. Clausen, and P.O. Fanger. 1998. Impact of temperature and humidity on the perception of indoor air quality during immediate and longer whole-body exposure. *Indoor Air* 8:276–84.
- Fanger, P.O. 1982. *Thermal Comfort*. Malabar, FL: Robert E. Krieger Publishing Co.
- Fanger, P.O., A. K. Melikov, H. Hanzawa, and J. Ring. 1988. Air turbulence and sensation of draught. *Energy and Buildings* 12:21–39.
- Fanger, P.O., B.M. Ipsen, G. Langkilde, B.W. Olesen, N.K. Christensen, and S. Tanabe. 1985. Comfort limits for asymmetric thermal radiation. *Energy and Buildings* 8:225–36.
- Fanger, P.O., B.W. Olesen, G. Langkilde, and L. Banhidi. 1980. Comfort limits for heated ceilings. ASHRAE Transactions 86(2):141–56.
- Fanger, P.O., and N.K. Christensen. 1986. Perception of draught in ventilated spaces. *Ergonomics* 29:215–35.
- Fishman, D.S., and S.L. Pimbert. 1979. Survey of subjective responses to the thermal environment in offices. *Indoor Climate*, P.O. Fanger and O. Valbjorn (eds.), Danish Building Research Institute, Copenhagen.
- Fobelets, A.P.R., and A.P. Gagge. 1988. Rationalization of the effective temperature, ET*, as a measure of the enthalpy of the human indoor environment. *ASHRAE Transactions* 94(1):12–31.
- Fountain, M., and C. Huizenga. 1995. "A Thermal Sensation Model for Use by the Engineering Profession." Final Report, ASHRAE RP-781. Prepared by Environmental Analytics, Piedmont, CA. for ASHRAE, Atlanta, GA.
- Fountain, M., and E. Arens. 1993. Air movement and thermal comfort. *ASHRAE Journal* August:26–30.
- Fountain, M., E. Arens, T. Xu, F.S. Bauman, and M. Oguru. 1996. An investigation of thermal comfort at high humidities. Final Report of RP-860. ASHRAE, Atlanta.
- Gagge, A.P., and R.G. Nevins. 1976. Effect of energy conservation guidelines on comfort, acceptability and health, Final Report of Contract #CO-04-51891-00, Federal Energy Administration.
- Gagge, A.P., Y. Nishi, and R.G. Nevins. 1976. The role of clothing in meeting FEA energy conservation guidelines. *ASHRAE Transactions* 82(2):234–47.
- Griffiths, I.D., and D.A. McIntyre. 1974. Sensitivity to temporal variations in thermal conditions. *Ergonomics* 17:499–507.
- Goldman, R.F. 1978. The role of clothing in achieving acceptability of environmental temperatures between 65°F and 85°F (18°C and 30°C). *Energy Conservation Strategies in Buildings*, J.A.J. Stolwijk, (Ed.) Yale University Press, New Haven.
- Gong, N., K.W. Tham, A.K. Melikov, D.P. Wyon, S.C. Sekhar, and D.K.W Cheong. 2005. Human perception of local air movement and the acceptable air velocity range

for local air movement in the tropics. *Proceedings of Indoor Air 2005, Beijing, China,* pp. 452–56.

- Hanzawa, H., A.K. Melikov, and P.O. Fanger. 1987. Airflow characteristics in the occupied zone of ventilated spaces. *ASHRAE Transactions* 93(1):524–39.
- ISO 7726:1998, Ergonomics of the Thermal Environment— Instruments for Measuring Physical Quantities.
- ISO 7730:2005, Ergonomics of the Thermal Environment— Analytical Determination and Interpretation of Thermal Comfort using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria.
- Jones, B.W., K. Hsieh, and M. Hashinaga. 1986. The effect of air velocity on thermal comfort at moderate activity levels. ASHRAE Transactions 92(2b):761–69.
- Knudsen, H.N., R.J. de Dear, J.W. Ring, T.L. Li, T.W. Puentener, and P.O. Fanger. 1989. Thermal comfort in passive solar buildings, Final Report to the Commission of the European Communities, Directorate-General for Science, Research and Development. Research Project EN3S-0035-DK(B). (Lyngby Copenhagen: Technical University of Denmark).
- Kubo, H., N. Isoda, and H. Enomoto-Koshimizu. 1997. Cooling effect of preferred air velocity in muggy conditions. *Building and Environment* 32(3):211–18.
- Laviana, J.E., F.H. Rohles, and P.E. Bullock. 1988. Humidity, comfort and contact lenses. *ASHRAE Transactions* 94(1):3–11.
- Lammers, J.T.H., L.G. Berglund, and J.A.J. Stolwijk. 1978. Energy conservation and thermal comfort in a New York City high rise office building. *Environmental Management* 2:113–17.
- Lee, K.H., and S. Schiavon. 2013. Influence of three dynamic predictive clothing insulation models on building energy use, HVAC sizing and thermal comfort. Submitted to *Energy and Buildings*.
- McCullough, E.A., and D.P. Wyon. 1983. Insulation characteristics of winter and summer indoor clothing. *ASHRAE Transactions* 89(2b):614–33.
- McCullough, E.A., B.W. Jones, and J. Huck. 1985. A comprehensive data base for estimating clothing insulation. *ASHRAE Transactions* 91(2a):29–47.
- McCullough, E.A., B.W. Olesen, and S. Hong. 1994. Thermal insulation provided by chairs. *ASHRAE Transactions* 100(1):795–802.
- McIntyre, D.A. 1976. Overhead radiation and comfort. *The Building Services Engineer* 44:226–32.
- McIntyre, D.A. 1978. Preferred air speeds for comfort in warm conditions. *ASHRAE Transactions* 84(2):264–77.
- McNall, P.E., Jr., and R.E. Biddison. 1970. Thermal and comfort sensations of sedentary persons exposed to asymmetric radiant fields. *ASHRAE Transactions* 76(1):123–36.
- McNall, P.E., Jr., J. Jaax, F.H. Rohles, R.G. Nevins, and W. Springer. 1967. Thermal comfort (thermally neutral) conditions for three levels of activity. *ASHRAE Transactions* 73(1):I.3.1-I.3.14.
- Melikov, A.K., H. Hanzawa, and P.O. Fanger. 1988. Airflow characteristics in the occupied zone of heated spaces without mechanical ventilation. *ASHRAE Transactions* 94(1):52–70.

- Nevins, R.G., and A.M. Feyerherm. 1967. Effect of floor surface temperature on comfort: Part IV, cold floors. *ASHRAE Transactions* 73(2):III.2.1-III.2.8.
- Nevins, R.G., K.B. Michaels, and A.M. Feyerherm. 1964. The effect of floor surface temperature on comfort: Part II, College age females. *ASHRAE Transactions* 70:37– 43.
- Nevins, R.G., and P.E. McNall, Jr. 1972. ASHRAE thermal comfort standards as performance criteria for buildings. *CIB Commission W 45 Symposium, Thermal Comfort* and Moderate Heat Stress, Watford, U.K. (Published by HMSO London 1973.)
- Nielsen, B., I. Oddershede, A. Torp, and P.O. Fanger. 1979. Thermal comfort during continuous and intermittent work. *Indoor Climate*, P.O. Fanger and O. Valbjorn, eds., Danish Building Research Institute, Copenhagen, pp. 477–90.
- Nilsson, S.E., and L. Andersson. 1986. Contact lens wear in dry environments. *ACTA Ophthalmologica* 64:221–25.
- Nishi, Y., and A.P. Gagge. 1977. Effective temperature scale useful for hypo- and hyperbaric environments. *Aviation, Space and Environmental Medicine* 48:97–07.
- Olesen, B.W. 1985. A new and simpler method for estimating the thermal insulation of a clothing ensemble. *ASHRAE Transactions* 91(2b):478–92.
- Olesen, B.W. 1977. Thermal comfort requirements for floors. *Proceedings of The Meeting of Commissions B1, B2, E1* of IIR, Belgrade, pp. 337–43.
- Olesen, B.W. 1977. Thermal comfort requirements for floors occupied by people with bare feet. *ASHRAE Transactions* 83(2):41–57.
- Olesen, S., P.O. Fanger, P.B. Jensen, and O.J. Nielsen. 1972. Comfort limits for man exposed to asymmetric thermal radiation. *CIB Commission W 45 Symposium, Thermal Comfort and Moderate Heat Stress*, Watford, U.K. (Published by HMSO London 1973).
- Olesen, B.W., E. Mortensen, J. Thorshauge, and B. Berg-Munch. 1980. Thermal comfort in a room heated by different methods. *ASHRAE Transactions* 86(1):34–48.
- Olesen, B.W., M. Scholer, and P.O. Fanger. 1979. Discomfort caused by vertical air temperature differences. *Indoor Climate*, P.O. Fanger and O. Valbjorn, eds., Danish Building Research Institute, Copenhagen.
- Rohles, F.H., J.E. Woods, and R.G. Nevins. 1974. The effect of air speed and temperature on the thermal sensations of sedentary man. *ASHRAE Transactions* 80(1):101–19.
- Rohles, F.H., S.A. Konz, and B.W. Jones. 1983. Ceiling fans as extenders of the summer comfort envelope. *ASHRAE Transactions* 89(1a):245–63.
- Rohles, F.H., G.A. Milliken, D.E. Skipton, and I. Krstic. 1980. Thermal comfort during cyclical temperature fluctuations. ASHRAE Transactions 86(2):125–40.
- Rohles, F.H., Jr., J.E. Woods, and R.G. Nevins. 1973. The influence of clothing and temperature on sedentary comfort. *ASHRAE Transactions* 79:71–80.
- Scheatzle, D.G., H. Wu, and J. Yellott. 1989. Extending the summer comfort envelope with ceiling fans in hot, arid climates. *ASHRAE Transactions* 95(1):269–80.

- Schiavon, S., and A.K. Melikov. 2009. Introduction of a Cooling Fan Efficiency Index. HVAC&R Research 5(6):1121–41.
- Schiavon, S., and K.H. Lee. 2013. Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures. *Building and Environment* 59:250–60.
- Schiller, G., E. Arens, F. Bauman, C. Benton, M. Fountain, and T. Doherty. 1988. A field study of thermal environments and comfort in office buildings. ASHRAE Transactions 94(2):280–308.
- Simmonds, P. 1992. The design, simulation and operation of a comfortable indoor climate for a standard office. *ASHRAE/DOE/BTEC Conference Proceedings*, Clearwater Beach, FL.
- Simmonds, P. 1993. Thermal comfort and optimal energy use. *ASHRAE Transactions* 99(1):1037–48.
- Simmonds, P. 1993. Designing comfortable office climates. ASHRAE Conference Proceedings, Building Design Technology and Occupant Well-Being in Temperate Climates, Brussels, Belgium, February.
- Simmonds, P. 2000. Using radiant cooled floors to condition large spaces and maintain comfort conditions. *ASHRAE Transactions* 106(1).
- Simmonds, P. 1994. Radiant heating and cooling systems. ASHRAE Transactions 100(2).

- Sprague, C.H., and P.E. McNall, Jr. 1971. Effects of fluctuating temperature and relative humidity on the thermal sensation (thermal comfort) of sedentary subjects. ASHRAE Transactions 77:183–99.
- Tanabe, S., and K. Kimura. 1989. Thermal comfort requirements under hot and humid conditions. *Proceedings of* the First ASHRAE Far East Conference on Air Conditioning in Hot Climates, Singapore, pp. 3–21.
- Toftum, J. 1997. Effect of airflow direction on human perception of draught. *Proceedings of CLIMA 2000, Brusssels, Belgium.*
- Toftum, J. 2004. Air movement—Good or bad? Indoor Air 14:40–5.
- Wyon, D.P., Th. Asgeirsdottir, P. Kjerulf-Jensen, and P.O. Fanger. 1973. The effects of ambient temperature swings on comfort, performance and behavior. *Arch. Sci. Physiol.* 27:441–58.
- Zhang, H., E. Arens, S. Abbaszadeh Fard, C. Huizenga, G. Paliaga, G. Brager, and L. Zagreus. 2007. Air movement preferences observed in office buildings. *International Journal of Biometeorology* 51:349–60.
- Zhao, R., S. Sun, and R. Ding. 2004. Conditioning strategies of indoor environment in warm climates. *Energy and Buildings* 36:1281–86.

(This appendix is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

INFORMATIVE APPENDIX M ADDENDA DESCRIPTION

ANSI/ASHRAE Standard 55-2013 incorporates ANSI/ASHRAE Standard 55-2010 and Addenda a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q and r to ANSI/ASHRAE Standard 55-2010. Table I-1 lists each addendum and describes the way in which the standard is affected by the change. It also lists the ASHRAE and ANSI approval dates for each addendum.

Addendum	Section(s) Affected	Description of Changes*	Approval Dates: • Standards Committee • ASHRAE BOD • ANSI
a	5.2.3.3.2 Without Local Control; 5.3 Optional Method for Determining Acceptable Thermal Conditions in Naturally Conditioned Spaces; new Table 5.3 Increases in Acceptable Operative Temperature Limits in the Adaptive Comfort Standard Resulting from Increasing Air Speed above 0.3 m/s (59 fpm)	This addendum makes two additions to the standard that clarify Figure 5.2.3.2 and Figure 5.3 by providing numerical adjustment factors and equations. It adds equation for clothing and metabolic rate adjustments to Figure 5.2.3.2 that are equivalent to doing SET calculations to re-create the curves. These adjustments simplify calculations when the cooling effect of air movement is applied at clothing and metabolic rates other than those used for Figure 5.2.3.2. And it adds equations that are equivalent to the comfort boundaries of Figure 5.3. In addition, the SET model of the cooling effect of air movement is extended to Section 5.3 Optional Method for Determining Acceptable Thermal Conditions in Naturally Conditioned Spaces. Additional air movement now extends the upper limit of the adaptive comfort zone in naturally ventilated buildings to warmer temperatures similar to the PMV/PPD model in Section 5.2	June 25, 2011 June 29, 2011 June 30, 2011
b	 3. Definitions; 4. General Requirements; 5. Conditions that Provide Thermal Comfort; New Informative Appendix C—Conditions that Provide Thermal Comfort 	This addendum spits normative and informative language that appears in the body of the Standard, primarily in Section 4 General Requirements; 5.1 Conditions that Provide Thermal Comfort, General Requirements; and 5.2.1 Graphical Comfort Zone Method for Typical Indoor Environments. Most of the informative language is moved to a new informative appendix.	January 21, 2012 January 25, 2012 January 26, 2012
c	3. Definitions; 5.3 Optional Method for Determining Acceptable Thermal Conditions in Naturally Conditioned Spaces; 5.4 Description of Thermal Environmental Variables	This addendum represents an evolution of the description and definition of the average outdoor temperature to be used in the adaptive comfort model. The original term – monthly average – did not fully capture the methodology used in defining the adaptive approach nor was it clear in describing how to apply it. The change to prevailing mean as well as the addition of the daily outdoor temperature definition provides much clearer direction on the application of the adaptive comfort model. This addendum allows a range of options for calculating the prevailing mean outdoor air temperature to accommodate different sources of outdoor weather data and different comfort applications.	January 21, 2012 January 25, 2012 January 26, 2012

TABLE M-1 Addenda to ANSI/ASHRAE Standard 55-2010

Addendum	Section(s) Affected	Description of Changes*	Approval Dates: • Standards Committee • ASHRAE BOD • ANSI
d	3. Definitions; 4.5; 5.1 General Requirements; 5.3 Optional Method for Determining Acceptable Thermal Conditions in Naturally Conditioned Spaces; New Informative Appendix I—Occupant- Controlled Naturally Conditioned Spaces	This addendum removes informative language related to the use of Section 5.3 for occupant-controlled naturally conditioned spaces (sometimes called the adaptive comfort method) from the body of the Standard and moves it to an informative appendix. It also states the requirements more clearly in normative language. In some cases, paragraph numbering has been added or modified for greater clarity.	January 21, 2012 January 25, 2012 January 26, 2012
e	 Definitions; Compliance 	This addendum adds a definition for climatic design data.	June 23, 2012 June 27, 2012 June 28, 2012
f	 5.2.4 Local Thermal Discomfort; 5.2.5 Temperature Variations with Time; New Informative Appendix H—Local Discomfort and Variations with Time 	This addendum removes informative language from the body of the Standard and moves it to a new informative appendix. It includes some minor changes to requirements and states the requirements more clearly in normative language. In some cases, section numbering has been added or changed for greater clarity. This addendum focuses primarily on Section 5.2.4, Local Thermal Discomfort, and Section 5.2.5 Temperature Variation with Time.	October 2, 2012 October 26, 2012 November 22, 2012
g	 5.1 General Requirements; 5.2.1.1; 5.2.1.2; 5.3.1.2; New Section 5.2 Method for Determining Occupant Characteristics; New Informative Appendix A—Use of Metabolic Rate Data 	This addendum clarifies the normative requirements for determining metabolic rates for representative occupants and moves these normative requirements to the body of the Standard. It adds a new informative appendix containing similar material that was previously in Normative Appendix A.	February 15, 2013 February 26, 2013 February 27, 2013
h	New Section 5.2.2 Clothing Insulation; New Informative Appendix B—Clothing Insulation	This addendum clarifies the normative requirements for determining clothing insulation for representative occupants and moves these normative requirements to the body of the Standard. It adds a new informative appendix containing similar material that was in the previous Normative Appendix B, Clothing Insulation.	January 26, 2013 January 29, 2013 January 30, 2013
i	3. Definitions; 5.2.3 Elevated Air Speed; Informative Appendix F Procedure for Evaluating Cooling Effect of Elevated Air Speed Using Set	This addendum clarifies calculation of the cooling effect of air movement by moving informative text to an informative appendix and by stating requirements more clearly in normative language. A new definition of "average air speed" is added to clarify that calculations shall use a time and spatial averaged air speed.	June 22, 2013 June 26, 2013 June 27, 2013
j	5.3.2 Methodology	Addendum c added a definition for "prevailing mean outdoor temperature" to the adaptive model including calculation procedures. The public review draft of subsequent Addendum d mistakenly deleted the calculation procedures section. This addendum inserts the calculation procedures from Addendum c back into the standard.	April 2, 2013 April 15, 2013 April 16, 2013

Addendum	Section(s) Affected	Description of Changes *	Approval Dates: • Standards Committee • ASHRAE BOD • ANSI
k	5.2.2.2 Insulation Determination; Informative Appendix B Clothing Insulation; Informative Appendix H Bibliography	This addendum adds a new method for the calculation of the clothing insulation using a predictive model of clothing insulation based on outdoor air temperature. This model can be used to predict clothing levels at design conditions, to generate clothing inputs for dynamic annual comfort simulations, or as an input for comfort control systems.	June 22, 2013 June 26, 2013 June 27, 2013
1	6 Design Compliance	This addendum renames Section 6 from Compliance to "Design Compliance" to clarify that Section 6 covers design requirements and documentation in contrast to Section 7 that covers evaluation of existing spaces. The addendum also removes informative language and clarifies the existing requirements in Section 6.	June 22, 2013 June 26, 2013 June 27, 2013
m	 5.3 General Method for Determining Acceptable Thermal Conditions in Occupied Spaces; Figure 5.3.1 The Graphic Comfort Zone Method; New Normative Appendix C—Methods for Determining Operative Temperature; New Informative Appendix F—Analytical and Graphic Comfort Zone Methods 	This addendum separates normative from informative text in the portions of Section 5 (Conditions that Provide Thermal Comfort) that describe the analytical and graphic methods.	June 22, 2013 June 26, 2013 June 27, 2013
n	3 Definitions; 5.4 Description of Thermal Environmental Variables	This addendum combines and clarifies definitions by absorbing Section 5.4 (Description of Thermal Environmental Variables) into the definitions in Section 3.0 (Definitions). Some definitions that were not used have been deleted, others that are commonly used have been added, and many have been revised to be more clear and specific.	June 22, 2013 June 26, 2013 June 27, 2013
0	3 Definitions; 7 Evaluation of the Thermal Environment; New Informative Appendix K— Measurements, Surveys, and Evaluation of Comfort in Existing Spaces: Parts 1 and 2; New Informative Appendix X2 Thermal Comfort Analysis	This addendum clarifies the normative language that appears in Section 7(Evaluation of the Thermal Environment). This revised Section 7 provides standardized measurement methods for the evaluation of comfort conditions in existing buildings. The intention is to assist users of the Standard in understanding what is actually happening in buildings. Use of standardized methods allows better comparison among different buildings and in the same building under a variety of conditions.	June 22, 2013 June 26, 2013 July 24, 2013
р	5.3.4.2 Draft	This addenda aligns Section 5.3.4.2 (Draft) with the definition of average air speed that was clarified in Addendum i.	June 22, 2013 June 26, 2013 July 24, 2013
q	3 Definitions; 5.3.3.4 Air Speed Measurement	This addendum deletes Section 5.3.3.4 (Air Speed Measurement) for consistency with Addendum i. The deleted section is mostly informative text. New definitions are added for "average air speed" and "average air temperature" to clarify how these commonly used terms apply to averages across the human body. Note that these definitions are also included in Addendum 55n.	June 22, 2013 June 26, 2013 July 24, 2013

Addendum	Section(s) Affected	Description of Changes [*]	Approval Dates: • Standards Committee • ASHRAE BOD • ANSI
Г	3 Definitions; 6.2 Documentation; 8 References	This addendum adds a requirement that design calculations shall use generally accepted engineering standards. The following definition is reproduced from ASHRAE/IES Standard 90.1-2010 for the convenience of reviewers: <i>generally accepted engineering standard:</i> a specification, rule, guide, or procedure in the field of engineering, or related thereto, recognized and accepted as authoritative.	June 22, 2013 June 26, 2013 June 27, 2013

TABLE M-1 Addenda to ANSI/ASHRAE Standard 55-2010

NOTICE

INSTRUCTIONS FOR SUBMITTING A PROPOSED CHANGE TO THIS STANDARD UNDER CONTINUOUS MAINTENANCE

This standard is maintained under continuous maintenance procedures by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. SSPC consideration will be given to proposed changes within 13 months of receipt by the manager of standards (MOS).

Proposed changes must be submitted to the MOS in the latest published format available from the MOS. However, the MOS may accept proposed changes in an earlier published format if the MOS concludes that the differences are immaterial to the proposed change submittal. If the MOS concludes that a current form must be utilized, the proposer may be given up to 20 additional days to resubmit the proposed changes in the current format.

ELECTRONIC PREPARATION/SUBMISSION OF FORM FOR PROPOSING CHANGES

An electronic version of each change, which must comply with the instructions in the Notice and the Form, is the preferred form of submittal to ASHRAE Headquarters at the address shown below. The electronic format facilitates both paper-based and computer-based processing. Submittal in paper form is acceptable. The following instructions apply to change proposals submitted in electronic form.

Use the appropriate file format for your word processor and save the file in either a recent version of Microsoft Word (preferred) or another commonly used word-processing program. Please save each change proposal file with a different name (for example, "prop01.doc," "prop02.doc," etc.). If supplemental background documents to support changes submitted are included, it is preferred that they also be in electronic form as word-processed or scanned documents.

For files submitted attached to an e-mail, ASHRAE will accept an electronic signature (as a picture; *.tif, or *.wpg) on the change submittal form as equivalent to the signature required on the change submittal form to convey non-exclusive copyright.

Submit an e-mail containing the change proposal files to:

change.proposal@ashrae.org

Alternatively, mail paper versions to: ASHRAE

ASHRAE Manager of Standards 1791 Tullie Circle, NE Atlanta, GA 30329-2305

Or fax them to: Attn: Manager of Standards 404-321-5478

The form and instructions for electronic submittal may be obtained from the Standards section of ASHRAE's Home Page, www.ashrae.org, or by contacting a Standards Secretary via phone (404-636-8400), fax (404-321-5478), e-mail (standards.section@ashrae.org), or mail (1791 Tullie Circle, NE, Atlanta, GA 30329-2305).

FORM FOR SUBMITTAL OF PROPOSED CHANGE TO AN ASHRAE STANDARD UNDER CONTINUOUS MAINTENANCE

NOTE: Use a separate form for each comment. Submittals (Microsoft Word preferred) may be attached to e-mail (preferred), or submitted in paper by mail or fax to ASHRAE, Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: change.proposal@ashrae.org. Fax: +1-404/321-5478.

1. Submitter:								
Affiliation:								
Address:	City:	State:	Zip:	Country:				
Telephone:	Fax:	E-Mail:						

I hereby grant ASHRAE the non-exclusive royalty rights, including non-exclusive rights in copyright, in my proposals. I understand that I acquire no rights in publication of the standard in which my proposals in this or other analogous form is used. I hereby attest that I have the authority and am empowered to grant this copyright release.

Submitter's signature: _____ Date: _____

All electronic submittals must have the following statement completed:

I (*insert name*) ______, through this electronic signature, hereby grant ASHRAE the non-exclusive royalty rights, including non-exclusive rights in copyright, in my proposals. I understand that I acquire no rights in publication of the standard in which my proposals in this or other analogous form is used. I hereby attest that I have the authority and am empowered to grant this copyright release.

2. Number and year of standard:

3. Page number and clause (section), subclause, or paragraph number:

- 4. I propose to:
 [] Change to read as follows

 (check one)
 [] Add new text as follows
- [] Delete and substitute as follows[] Delete without substitution

Use underscores to show material to be added (added) and strike through material to be deleted (deleted). Use additional pages if needed.

5. Proposed change:

6. Reason and substantiation:

7. Will the proposed change increase the cost of engineering or construction? If yes, provide a brief explanation as to why the increase is justified.

[] Check if additional pages are attached. Number of additional pages: _____

[] Check if attachments or referenced materials cited in this proposal accompany this proposed change. Please verify that all attachments and references are relevant, current, and clearly labeled to avoid processing and review delays. *Please list your attachments here:*

POLICY STATEMENT DEFINING ASHRAE'S CONCERN FOR THE ENVIRONMENTAL IMPACT OF ITS ACTIVITIES

ASHRAE is concerned with the impact of its members' activities on both the indoor and outdoor environment. ASHRAE's members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of the systems and components in their responsibility while maximizing the beneficial effects these systems provide, consistent with accepted standards and the practical state of the art.

ASHRAE's short-range goal is to ensure that the systems and components within its scope do not impact the indoor and outdoor environment to a greater extent than specified by the standards and guidelines as established by itself and other responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive technical committee structure, continue to generate up-to-date standards and guidelines where appropriate and adopt, recommend, and promote those new and revised standards developed by other responsible organizations.

Through its *Handbook*, appropriate chapters will contain up-to-date standards and design considerations as the material is systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and will seek out and disseminate information from other responsible organizations that is pertinent, as guides to updating standards and guidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the system's intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE's primary concern for environmental impact will be at the site where equipment within ASHRAE's scope operates. However, energy source selection and the possible environmental impact due to the energy source and energy transportation will be considered where possible. Recommendations concerning energy source selection should be made by its members.

ASHRAE · 1791 Tullie Circle NE · Atlanta, GA 30329 · www.ashrae.org

About ASHRAE

ASHRAE, founded in 1894, is an international building technology society with more than 50,000 members worldwide. The Society and its members focus on building systems, energy efficiency, indoor air quality, refrigeration, and sustainability. Through research, standards writing, publishing, certification and continuing education, ASHRAE shapes tomorrow's built environment today.

For more information or to become a member of ASHRAE, visit www.ashrae.org.

To stay current with this and other ASHRAE standards and guidelines, visit www.ashrae.org/standards.

Visit the ASHRAE Bookstore

ASHRAE offers its standards and guidelines in print, as immediately downloadable PDFs, on CD-ROM, and via ASHRAE Digital Collections, which provides online access with automatic updates as well as historical versions of publications. Selected standards are also offered in redline versions that indicate the changes made between the active standard and its previous version. For more information, visit the Standards and Guidelines section of the ASHRAE Bookstore at www.ashrae.org/bookstore.

IMPORTANT NOTICES ABOUT THIS STANDARD

To ensure that you have all of the approved addenda, errata, and interpretations for this standard, visit www.ashrae.org/standards to download them free of charge.

Addenda, errata, and interpretations for ASHRAE standards and guidelines are no longer distributed with copies of the standards and guidelines. ASHRAE provides these addenda, errata, and interpretations only in electronic form to promote more sustainable use of resources.